在第一部份中,β-硝基苯乙烯系列物與有機鋰RLi試劑反應之1,4-加成中間體經加到稀酸水溶液後可得到硝基烷類,如果加入冰浴的濃鹽酸水溶液(36%)中,預期會進行Nef 或 Meyer反應而產生羰基或羧酸的化合物,但實驗結果卻意外地發現氯離子可以捕捉住活潑的中間體而形成氯化。氯化在鹼性條件下可脫去HCl 而形成氧化。氧化可以和烯或炔類進行1,3-雙偶極環化加成反應而生成具有位向選擇性或高度立體特異性的產物2-isoxazolines 或isoxazoles,在第二部份中,β-硝基苯乙烯系列物也可與一系列穩定的親核試劑反應,藉由加入冰浴的濃鹽酸水溶液而形成氯化。在連續操作的條件下,β-硝基苯乙烯系列物與具有不飽和鍵的有機鋰RLi試劑及一系列具有不飽和鍵的穩定的親核試劑反應,反應中間體分別經由濃鹽酸水溶液(36%)及三乙基胺處理後可產生雙環化合物此反應稱為分子內之氧化-烯類環化加成反應(INOC, intramolecular nitrile oxide-olefin cycloaddition)。 在第三部份中,5-substituted-2-dicyanomethyleneadaman- tanes (4-Z)(Z = H, F, Cl, Br, Ph)可與不同種類的格里納試劑反應經由1,4-加成而得到加成產物和/或經由β-氫陰離子轉移而得到還原產物。在靜電場(electrostatic field)的影響下及存在格里納試劑與受質4-Z間的立體障礙此二因子將決定烷基或苯甲基和氫陰離子傾向從zu-face或en-face攻擊受質。另一方面將受質4-Br或4-Ph分別與苯基溴格里納試劑反應所得之中間體A加入無水的甲醇中或冰冷的稀酸水溶液中,可分別得到1,2-加成產物6-Br,7-Br和8-Ph。 In part one,β-nitrostyrenes can react with organolithium to form 1,4-addition intermediates. When the intermediates nitronates are treated with dilute aqueous acid solution, primary nitroalkanes are obtained. It is expected to undergo Nef or Meyer reaction to generate carbonyl compounds or carboxylic acids when the intermediate nitronates are slowly added to the ice cold concentrated(36%) hydrochloric acid solution. Surprisingly, the chloride ion can trap the reactive intermediates to generate hydroximoyl chlorides. Hydroximoyl chlorides can be converted into nitrile oxides by treating with base such as triethylamine. It is known that nitrile oxides undergo 1,3-dipolar cycloaddition with alkenes or alkynes to generate high yields of regioselective or stereospecific products such as 2-isoxazolines or isoxazoles. In part two, β-nitrostyrenes can also react with stablilzed nucleophiles to generate hydroximoyl chlorides after treating the interm-ediates with (36%) hydrochloric acid. Under successive operation, β-nitrostyrenes can react with a serious of stabilized nucleophiles and organolithium bearing an unsa-turated bond to synthesize bicyclic compounds after treating the intermediates with (36%) hydrochloric acid and then with triethylamine.The reaction is called INOC,(intramolecular nitrile oxide-olefin cycloaddition). In part three,reactions of 5-substituted-2-dicyano- methyleneadamantanes (4-Z) with benzylmagnesium bromide (PhCH2MgBr) or alkyl magnesium halide (RMgX) generated the 1,4-addition (5-Z (R)) and/or the hydrogenation (5-Z (H)) products. A variety of substituents X were used: hydro, fluoro, chloro, bromo and phenyl groups. The generation of the different isomeric products from the zu-face or en-face by the transfer of the benzyl or alkyl groups, or the hydride from the Grignard reagents is discussed in terms of the electrostatic field influence and the steric hindrance between the Grignard reagent and the substrate 4-Z. Reactions of 4-Br or 4-Ph with phenylmagnesium bromide generated 1,2-addition products 6-Br, 7-Br or 8-Ph when the intermediate A was added to dry methanol or to dilute ice-cold hydrochloric acid solution.
In part one,β-nitrostyrenes can react with organolithium to form 1,4-addition
intermediates. When the intermediates nitronates are treated with dilute
aqueous acid solution, primary nitroalkanes are obtained. It is expected to
undergo Nef or Meyer reaction to generate carbonyl compounds or carboxylic
acids when the intermediate nitronates are slowly added to the ice cold
concentrated(36%) hydrochloric acid solution. Surprisingly, the chloride ion
can trap the reactive intermediates to generate hydroximoyl chlorides.
Hydroximoyl chlorides can be converted into nitrile oxides by treating with
base such as triethylamine. It is known that nitrile oxides undergo 1,3-
dipolar cycloaddition with alkenes or alkynes to generate high yields of
regioselective or stereospecific products such as 2-isoxazolines or isoxazoles.
In part two, β-nitrostyrenes can also react with stablilzed nucleophiles to
generate hydroximoyl chlorides after treating the interm-ediates with (36%)
hydrochloric acid. Under successive operation, β-nitrostyrenes can react with
a serious of stabilized nucleophiles and organolithium bearing an unsa-turated
bond to synthesize bicyclic compounds after treating the intermediates with (
36%) hydrochloric acid and then with triethylamine.The reaction is called
INOC,(intramolecular nitrile oxide-olefin cycloaddition).
In part three,reactions of 5-substituted-2-dicyano-
methyleneadamantanes (4-Z) with benzylmagnesium bromide (PhCH2MgBr) or alkyl
magnesium halide (RMgX) generated the 1,4-addition (5-Z (R)) and/or the
hydrogenation (5-Z (H)) products. A variety of substituents X were used:
hydro, fluoro, chloro, bromo and phenyl groups. The generation of the
different isomeric products from the zu-face or en-face by the transfer of the
benzyl or alkyl groups, or the hydride from the Grignard reagents is discussed
in terms of the electrostatic field influence and the steric hindrance between
the Grignard reagent and the substrate 4-Z. Reactions of 4-Br or 4-Ph with
phenylmagnesium bromide generated 1,2-addition products 6-Br, 7-Br or 8-Ph
when the intermediate A was added to dry methanol or to dilute ice-cold
hydrochloric acid solution.
Part 1
1. (a) Corey, E. J.; Estreicher, H. J. Am. Chem. Soc. 1978, 100, 6294. (b)
Seebach, D.; Colvin, E. W.; Weller, T. Chimia 1979, 33, 1. (c) Barrett, A. G.
M.; Graboski, G. G. Chem. Rev. 1986, 86, 751. (d) Rosini, G.; Ballini, R.
Synthesis 1988, 833. (e) Barrett, A. Chem. Soc. Rev. 1991, 20, 95.
2. (a) Bedford, C. D.; Nielsen, A. T. J. Org. Chem. 1978, 43, 2460. (b)
Langer, W.; Seeback, D. Helvetica Chimica Acta 1979, 62, 1710. (c) Hayama, T.;
Tomoda, S.; Takeuchi, Y.; Nomura, Y. Tetrahedron Lett. 1983, 24, 2795. (d)
Seebach, D.; Knochel, P. Helv. Chim. Acta 1984, 67, 261. (e) Seebach, D.;
Giorgio, C.; Knochel, P. Tetrahedron 1985, 41, 4861.
3. (a) Buckley, G. D. J. Chem. Soc. 1947, 1494. (b) Buckley, G. D.; Ellery, E.
J. J. Chem. Soc. 1947, 1497. (c) Ashwood, M. S.; Bell, L. A.; Houghton, P. G.;
Wright, S. H. B. Synthesies 1988, 379.
4. Michel, J.; Henry-Basch, E. C. R. Acad. Sci. Ser. C 1966, 262, 1274.
5. Langer, W.; Seebach, D. Helv. Chim. Acta 1979, 62, 1710.
6. (a) Pecunioso, A.; Menicagli, R. Tetrahedron 1987, 43, 5411. (b)Pecu-nioso,
A.; Menicagli, R. J. Org. Chem. 1988, 53, 45. (c) Pecunioso, A.; Menicagli, R.
J. Org. Chem. 1988, 53, 2614. (d) Pecunioso, A.; Menicagli, R. J. Org. Chem.
1989, 54, 2391.
7. (a) Hanson, A.-T.; Nillson, A.-M. Tetrahedron 1982, 38, 389. (b) Stiver,
S.; Yates, P. J. Chem. Soc., Chem. Commun. 1983, 50. (c) Retherford, C.; Yeh,
M.-C. P.; Schipor, I.; Chen, H. G.; Knochel, P. J. Org. Chem. 1989, 54, 5200. (
d) Retherford, C.; Knochel, P. Tetrahedron Lett. 1991, 32, 441. (e) Jubert,
C.; Knochel, P. J. Org. Chem. 1992, 57, 5425. (f) Jubert, C.; Knochel, P. J.
Org. Chem. 1992, 57, 5431.
8. (a)Meyer, V. ; Wurster, C. Ber. 1873, 6, 1168. (b) Picnnic, H. W. Org.
React. 1990, 38, 655. (c) Edward, J. T.; Tremaine, P. H. Can, J. Chem. 1971,
3483, 3489, 3493 and references cited therein.
9. Nef, J. U. Justus Liebigs Ann. 1894, 280, 263.
10. Wade, P. A.; Pillay, M. K. J. Org. Chem. 1981, 46, 5425.
11. (a)Kanemasa, S.; Tsuge, O. Heterocycles 1990, 30, 719. (b) Esipenko, A.
A.; Samarai, L. I. Russ. Chem. Rev. 1993, 62, 1097.
12. Kozikowski, A. P.; Cheng, X.-M. Tetrahedron Lett. 1987, 28, 3189.
13. (a) Hosomi, A.; Shoji, H.; Sakurai, H. Chem. Lett. 1985, 1047. (b)
Anderson, W. K.; Raju, N. Synth. Commun. 1989, 19, 2237.
14. Wade, P. A.; Bereznak, J. F.; Palfey, B. A. Carroll, P. J.; Dailey, W. P.;
Sivasubramanian, A. J. Org. Chem. 1990, 55, 3045.
15. (a) Curran, D. P.; Scanga, S. A.; Fenk, C. J. J. Org. Chem. 1984, 49,
3474. (b) Kozikowski, A. P.; Ghosh, A. K. J. Am. Chem. Soc. 1982, 104, 5788.
16. (a) Brown, R. S.; Eyley, S. C.; Parsons, P. J. Synet. Commun. 1985, 15,
633. (b) Heinze, I.; Eberbach, W. Tetrahedron Lett. 1988, 29, 2051.
17. Christl, M.; Huisgen, R. Chem. Ber. 1873, 106, 3345.
18. Werner, A.; Buss, H. Chem. Ber. 1894, 27, 2193.
19. Lee, G. A. Synthesis 1982, 508.
20. Grundmann, C.; Richter, R. J. Org. Chem. 1967, 32, 476.
21. Garant, L.; Sala, A. ; Zecchi, G. J. Org. Chem. 1975, 40, 2403.
22. Mukaiyama, T.; Hoshino, T. J. Am. Chem. Soc. 1960, 82, 5339.
23. (a) Yao, C.-F.; Chen, W.-C.; Lin, Y.-M. Tetrahedron Lett. 1996, 37, 6339.
24. Wade, P. A.; Amin, N. V.; Yen, H. K.; Price, D. T.; Huhn, G. F. J. Org.
Chem. 1984, 49, 4595.
25. (a) Padwa, A. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed. Wiley-
Interscience; New York, 1984, Vol. 2. (b) Curran, D. P. Advances in
Cycloaddition; JAI Press; Greenwich, CT, 1988, p 129.
26. Jung, M. E.; VU, B. T. Tetrahedron Lett. 1996, 37, 451.
27. (a) Gottlieb, L.; Hassner, A. J. Org. Chem. 1995, 60, 3759. (b) Namboothiri
, I. N. N.; Hassner, A.; Gottlieb, H. E. J. Org. Chem. 1997, 62, 485.
28. (a)Wade, P. A.; Hinney, H. R. J. Am. Chem. Soc. 1979, 101, 1319. (b)
Kozikowski, A. P.; Ghosh, A. K. Tetrahedron Lett. 1983, 24, 2623. (c)
Kozikowski, A. P.; Ghosh, A. K. J. Org. Chem. 1985, 50, 778.
29. Bouveault, L; Wahl, A. C. R. Acad. Sci. 1902, 135, 41.
30. Bordwell, F. G.; Garbisch, E. W. J. Org. Chem. 1962, 27, 2322, 3049.
31. Gilman, H.; Moore, F. W.; Baine, O. J. Am. Chem. Soc. 1941, 63, 2479.
32. Yamamoto, Y.; Kondo, K.; Moritani, I. J. Org. Chem. 1975, 40, 3644.
Part 2
1. (a) Corey, E. J.; Estreicher, H. J. Am. Chem. Sec. 1978, 100, 6294. (b)
Seebach, D.; Colvin, E. W.; Well, T. Chimia 1979, 33, 1. (c) Barrett, A. G.
M.; Graboski, G. G. Chem. Rev. 1986, 86, 751. (d) Rosini, G.; Ballini, R.
Synthesis 1988, 833. (e) Barrett, A. G. M. Chem. Sec. Rev. 1991, 20, 95. (e)
Several articles in Tetrahedron: Symposia in Print 1990, 46 (21), Barrett, A.
G. M. Ed.
2. (a) Torsell, K. B. G. Nitrile Oxides, Nitrones and Nitronates in Organic
Synthesis, VCH; New York, 1988. (b) Gottlieb, L.; Hassner, A. J. Org. Chem.
1995, 60, 3759. (c) Dehaen, W.; Hassner, A. Tetrahedron Lett. 1990, 31, 743.
3. (a) Mukaiyama, T.; Hoshino, T. J. Am. Chem. Soc. 1960, 82, 5339. (b)
Hassner, A.; Basel, Y. Synthesis 1997, 309. (c) Maugein, N.; Wagner, A.;
Mioskowski, C. Tetrahedron Lett. 1997, 38, 1547.
4. (a) Kamaran, G.; Kulkami, G. H. Tetrahedron Lett. 1994, 35, 5517. (b)
Kamaran, G.; Kulkami, G. H. Tetrahedron Lett. 1994, 35, 9099. (c) Kamaran, G.;
Kulkami, G. H. J. Org. Chem. 1997, 62, 1516.
5. (a) Padwa, A. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A.; Ed.; Wiley-
Interscience; New York, 1984; Vol. 2. (b) Curran, D. P. Advances in
Cyclaaddition; JAI Press; Greenwich, CT, 1988; p 129.
6. (a) Hassner, A.; Maurya, R.; Padwa, A.; Bullock, W. H. J. Org. Chem. 1991,
56, 2775. (b) Hassner, A.; Maurya, R.; Mesko, E. Tetrahedron Lett. 1988, 29,
5313. (c) Hassner, A.; Maurya, R. Tetrahedron Lett. 1989, 30, 5803. (d) Grigg,
R. Chem. Sec. Rev. 1987, 16, 89. (e) Grigg, R.; Marka-ndu, J.; Perrior, T.;
Surendrakumar, S.; Wamock, W. J. Tetrahedron Lett. 1990, 31, 559.
7. (a) Yao, C.-F.; Chen, W.-C.; Lin, Y.-M. Tetrahedron Lett. 1996, 37, 6339. (
b) Yao, C.-F.; Kao, K.-S.; Liu, J.-T.; Chu, C.-M.; Wang, Y.; Chen, W.-C.; Lin,
Y.-M.; Yan, M.-C.; Liu, J.-Y.; Chuang, M.-C.; Shine, J.-L. Terrahedron 1998,
54, 791.
8. Yao, C.-F.; Yang C.-S.; Fang, H.-Y. Tetrahedron Lett. 1997, 38, 6419.
9. (a) Hassner, A.; Dehaen, W. Chem. Ber. 1991, 124, 1181. (b) Hassner, A.;
Friedman, O.; Dehaen, W. Liebigs A. 1997, 587. (c) Hassner, A.; Murthy, K. S.
K. J. Org. Chem. 1989, 54, 5277.
10. Hassner, A.; Dehaen, W. J. Org. Chem. 1990, 55, 5505.
11. Tsuge, O.; Kanemasa, S.; Suga, H.; Nakagawa, N. Bull. Chem. Soc. Jpn.
1987, 60, 2463.
12. Grundmann C.; Richter, R. J. Org. Chem. 1968, 33, 476.
13. (a) Miyashita, M.; Awen B. Z. E.; Yoshikoshi, A. Synthesis 1990, 563. (b)
Ehrig, V.; Seebach, D. Chem. Ber. 1975, 108, 1961. (c) Seebach, D.; Leitz, H.
R.; Ehrig, V. Chem. Ber. 1975, 108, 1924.
14. (a) Bouveault, L; Wahl, A. C. R. Acad. Sci. 1902, 135, 41. (b) Bord-well,
F. G.; Garbisch, E. W. J. Org. Chem. 1962, 27, 2322, 3049.
15. Confalone, P. N.; Pizzolato, G.; Confalone, D. L.; Uskokovic, M. R. J. Am.
Chem. Soc. 1980, 102, 1954.
16. Armarego, W.L.F. Purification of Laboratory Chemicals , 2nd ed.; Perrin, D.
D., Ed.; Pergamon Press, 1980; p135.
17. Armarego, W.L.F. Purification of Laboratory Chemicals , 2nd ed.; Perrin, D.
D., Ed.; Pergamon Press, 1980; p81.
18. Armarego, W.L.F. Purification of Laboratory Chemicals , 2nd ed.; Perrin, D.
D., Ed.; Pergamon Press, 1980; p216.
Part 3
1. (a) Jones, G. R. N. Nature (London) 1972, 235, 257. (b) Fatiadi, A. J.
Synthesis 1978, 165. (c) Freeman, F. Chem. Rev. 1980, 329.
2. (a) Latif, N.; Mishriky, N. Can. J. Chem. 1966, 41, 1271. (b) Latif, N.
;Zeid, I. F.; Assad, F. Chem. Ind. (London) 1970, 1539. (c) Latif, N.;
Girgis, N. S.; Michael, F. Tetrahedron 1970, 26, 5765. (d) Latif, N.;
Mishriky, N.; Mohsen, K. A. J. Chem. Soc. Perkin Trans. 1 1974, 875.
3. (a) Landa, S.; Machacek, V. Collection Czech. Chem. Commun. 1953, 5, 1. (b)
Fort, R. C.; Schleyer, P. V. R. Chem. Rew. 1964, 64, 277.
4. (a) Mehta, G.; Khan, F. A. J. Am. Chem. Soc. 1990, 112, 6140. (b)
Halterman, R. L.; McEvoy, M. A. J. Am. Chem. Soc. 1990, 112, 6690. (c) Wu, Y.-
D.; Tucker, J. A.; Houk, K. N. J. Am. Chcm. Soc. 1991, 113,
5018 and referencee cited therein. (d) Paddon-Row, M. N.; Wu, Y.-D.; Houk, K.
N. J. Am. Chem. Soc. 1992, 114, 10638 and referencee cited therein. (e)
Halterman, R. L.; McEvoy, M. A. Tetrahedron Lett. 1992, 33, 753; J. Am. Chem.
Soc. 1992, (f) Mehta G.; Praveen, M. Tetrahedron Lett. 1992, 33, 1759. 114,
980. (g)Ganguly, B.; Chandrasekhar, J.; Khan, F. A.; Mehta, G. J. Org. Chem.
1993, 58, 1734 and references cited therein.
5. (a) Cheung, C. K.; Tseng, L. T.; Lin, M.-H.; Srivastava, S.; le Noble, W.
J. J. Am. Chem. Soc. 1986, 108, 1598. (b).Srivastava, S.; le Noble, W. J. J.
Am. Chem. Sec. 1987, 109, 5874. (c) Bodepudi, V. R.; le Noble, W. J. J. Org.
Chem. 1991, 56, 2001; 1994, 59, 3265. (d) Li, H.; Silver, J. E.; Watson, W.
H.; Kashyap, R. P.; le Noble, W. J. J. Org. Chem. 1991, 56, 5932. (e)Muk-
herjee, A.; Venter, E. M. M.; le Noble, W. J. Tetrahedron Lett. 1992, 33,
3837. (f) Coxon, J. M.; Houk, K. N.; Luibrand, R. T. J. Org. Chem. 1995, 60,
418 and references cited therein.(g) Chung, W.-S.; Tsai, T.-L.; Ho, C.-C.;
Chiang, M. N. N.; le Noble, W. J. J. Org. Chem. 1997, 62, 4672.
6. (a) Cieplak, A. S. J. Am. Chem. Soc. 1981, 103, 4540. (b) Johnson, C. R.;
Tait, B. D.; Cieplak, A. S. J. Am. Chem. Soc. 1987, 109, 5875. (c) Cieplak, A.
S.; Tait, B. D.; Johnson, C. R. J. Am. Chem.Soc. 1989, 111, 8447.
7. (a) Adcock, W.; Cotton, J.; Trout, N. A. J. Org. Chem. 1994, 59, 1867. (b)
Adcock, W.; Cotton, J.; Trout, N. A. J. Org. Chem. 1995, 60, 7074.
8. Adcock, W.; Head, N. J.; Lokan, N. R.; Trout, N. A. J. Org. Chem.
1997, 62, 6177.
9. (a) Streitwieser, A.; Heathcock, C. H.; Kosower, E. M., in Introduction to
Organic Chemistry 4th edn., Macmillan, New York, 1992, p. 403. (b) Smith, M.
B., in Organic Synthesis, McGraw-Hill, Singapore, 1994, p. 714. (c) March, J.,
in Advanced Organic Chemistry: Reactions, Mechanism and Structure, 4th edn.,
John Wiley & Sons, New York, 1992, p. 926.
10. Lin, M.-H.; Silver, J. E.; le Noble, W. J. J. Org. Chem. 1988, 53, 5155.
11. Karasch, M.; Reinmuth, O. Grignard Reactions of Nonmetallic
Substrates Constable, New York, 1954, p. 774.
12. Gould, E. S., Mechanism and Structure in Organic Chemistry, Holt,
Rinehart and Winston, New York, 1962, p. 403.
13. Pickard, P. L.; Tolbert, T. J. J. Org. Chem. 1961, 26, 4886.
14. Yao, C.-F.; Chen, Y.-S.; Chen, W.-C.; Sheu, R.-S.; Lai, J.-K.; Ueng, C.-H.
Acta Crystallogr., Sect. C 1997, 53, 956.
15. Migrdichian, V. The Chemistry of Organic Cyanogen Compounds
Reinhold, New York, 1947, p. 254.
16. (a) Tabushi, I.; Aoyama, Y. J. Org. Chem. 1973, 38, 3447. (b) Xie, M. ; le
Noble, W. J. J. Org. Chem. 1989, 54, 3839. (c) Chung, W.-S.; Liu, Y.-D. ;
Wang, N.-J. J. Chem. Soc. Perkin Trans. 2 1995, 581. (d) Kaselj, M.;
Gonikberg, E. M.; le Noble, W. J. J. Org. Chem. 1998, 63, 3218.
17. Geluk, H. W. Synthesis 1972, 374.
18. (a) Cope, A. C.; Hoyle, K. E. J. Am. Chem. Soc. 1941, 63, 733. (b)
Krijnen, B.; Beverloo, H. B.; Verhoeven, J. W.; Reiss, C. A.; Goubitz, K.;
Heijdenrijk, D. J. Am. Chem. Soc. 1989, 111, 4433.
19. Dekkers, A. W. J. D.; Verhoeven, J. W.; Speckamp, W. N. Tetrahedron 1973,
29, 1691.
20. van Hes, R.; Smit, A., Kralt, T.; Peters, A. J. Med. Chem. 1972, 15, 132.