研究生: |
李政宏 Li, Cheng-Hung |
---|---|
論文名稱: |
合成奈米材料及其在生醫與能源上之應用 Synthesis of Nanomaterials for Biomedical and Energy Applications |
指導教授: |
陳家俊
Chen, Chia-Chun |
學位類別: |
博士 Doctor |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2015 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 92 |
中文關鍵詞: | 金奈米粒子 、鋰離子電池 、斷層掃描顯影劑 、鈉離子電池 |
英文關鍵詞: | gold nanoparticle, lithium ion battery, CT contrast agent, sodiumion battery |
DOI URL: | https://doi.org/10.6345/NTNU202205077 |
論文種類: | 學術論文 |
相關次數: | 點閱:163 下載:16 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來螢光導引手術使用分子影像探針的技術已經大幅的進步,可以精準地來切除腫的位置.此篇我們合成出螢光奈米粒子(金和參雜銪的釓氧化物)結合標靶適體AS-1411.此種奈米粒子可以有好的水溶性、生物相容性、可見螢光、和應在斷層掃瞄時有不錯的X光吸收能力(金)並有好的磁化率可應用在核磁共振裡(參雜銪的釓氧化物).螢光奈米粒子可以拿來應用在斷層掃描中以老鼠進行實驗當作顯影試劑,進一步得知腫瘤的位置.更進一步的是我們可以利用奈米粒發出的螢光讓肉眼輕易地直接看到來進行切除.經由切除下來的腫瘤,我們進行IVIS的測試發現,其螢光強度遠大於對照組.所以可以清楚的說明從螢光圖上螢光奈米粒子可以被用來當作標靶癌症腫瘤的螢光標籤.我們的目標就是讓功能化的奈米粒子成功地成為有潛力應用在臨床上螢光導引的手術中.而結果顯示,螢光奈米粒子不僅可以當作醫藥的顯影試劑,未來也可以當作自體螢光探針來應用在手術中.
奈米粒子不僅可以應用在生醫應用中,也可以拿來用在能量儲存,像是锂電磁.近年來科學家試著用矽來取代電極中的碳材來改善電磁效能.最好的情形下可以改善將近10倍儲存電容量.但矽在幾次充放電過後會產生結構上的崩壞,使電池死亡.而新型以矽為電極材料的锂離子電池就是克服在充放電後所導致的電容量損失所發展出來的.此篇研究裡,我們拿矽與參雜SPA(5-sulfoisophthalic acid)的聚苯胺做結合來當锂離子電池的電極.此一複合材料在經過一千圈的充放電後還有99.6%的庫倫效率並高達925 mAh g-1.代表經由參雜SPA可以有效改善電極強度.
這個發現開啟了一個讓矽成為電極的可能.除了矽我們還使用了以碳為基材的氧化鉛複合物來嘗試作為電池,首先PVP經由水熱法碳化成含碳基材,再來氧化鉛參雜銅元素來增加導電度.此一材料和其他報導過含鉛材料相比有不錯的電容量(420 mAh g-1),在5.5 A g−1電流下可以充達9500圈還有大於90%的電容量.
Recent development of molecular imaging probes for fluorescence-guided surgery has shown great progresses for precisely determining tumor margin to execute the tissue resection. Here we synthesize the fluorescent nanoparticles (gold and europium-doped gadolinium oxide) conjugated with nucleolin-targeted AS1411 aptamer. The nanoparticle conjugates exhibit high water-solubility, good biocompatibility, visible fluorescence, strong X-ray attenuation for computed tomography(CT) contrast enhancement and high magnetic susceptibility (europium-doped gadolinium oxide (Gd2O3:Eu) nanoparticles) . The fluorescent nanoparticle conjugates are applied as a molecular contrast agent to reveal the tumor location in CL1-5 tumor-bearing mice by CT imaging. Furthermore, the fluorescence emitting from the conjugates in the CL1-5 tumor can be easily visualized by the naked eyes. After the resection, the IVIS measurements show that the fluorescence signal of the nanoparticle conjugates in the tumor is greatly enhanced in comparison to that in the controlled experiment. The fluorescent imaging clearly reveals that the nanoparticles can be applied as fluorescent tags for cancer-targeting molecular imaging. Our work has shown potential application of functionalized nanoparticles as a multi-function imaging agent in clinical fluorescence-guided surgery. Overall, our results demonstrate that the fluorescence nanoparticles could not only be served as new medical contrast agents but also as intraoperative fluorescent imaging probes for guided surgery in the near future.
Nanomaterials not only use on bio-application but also energy storage source, such as lithium battery. For more than a decade, scientists have tried to improve lithium-based batteries by replacing the graphite in one terminal with silicon, which can store 10 times more charge. But after just a few charge / discharge cycles, the
I
silicon structure would crack and crumble, rendering the battery useless. The new silicon based anodic materials in lithium ion battery (Si-based LIB) are worldwide developed to overcome the capacity decay during the lithiation/delithiation process. In this study, Si nanoparticles coated with 5-sulfoisophthalic acid (SPA) doped polyaniline (core/shell SiNPs@PANi/SPA) composite were prepared and applied as the anodic materials for LIB applications. The detailed structure of core/shell SiNPs@PANi/SPA composite was characterized by high-resolution scanning electron microscopy before and after the charging/discharging. The electrochemical measurements showed that the SiNPs@PANi/SPA anode exhibited high capacity of 925 mAh g-1 and high Columbic efficiency (99.6%) after long-term cyclic life (1000 cycles). Overall results indicated that the SPA dopant doped polyaniline served as a conductive matrix to improve electrical contact and to provide adhesive force in Si-based LIB. Our approach opens a route for the design of efficient silicon nanocomposites for LIB applications. Not only one way we want to approach high performance on anode of battery. We tried different materials like carbon-based metal oxide. Nanostructure composites of lead oxide/copper–carbon (PbO/Cu–C) were synthesized through in situ solvothermal synthesis and heat treatment of PbO/Cu with polyvinylpyrrolidone (PVP) and used as lithium-ion battery anodes. A PbO active particle was embedded in the Cu and PVP–C matrix, accommodating volume changes and maintaining the electronic conductivity of PbO. The composite exhibits superior electrochemical performance, with a capacity of 420 mAh g-1 at a current density of 165 mA g−1, compared with previously reported Pb and PbO composite anodes. The developed anode exhibits >90% capacity retention after 9500 cycles, beginning from the second cycle, at a current density of 5.5 A g−1.
References
1. Yang, H. et al. Protein conformational dynamics probed by single-molecule electron transfer. Science 302, 262-266 (2003).
2. Wang, Y., Wang, Y., Zhou, F., Kim, P. & Xia, Y. Protein-protected Au clusters as a new class of nanoscale biosensor for label-free fluorescence detection of proteases. Small 8, 3769-3773 (2012).
3. Ahmed, E., Morton, S.W., Hammond, P.T. & Swager, T.M. Fluorescent multiblock pi-conjugated polymer nanoparticles for in vivo tumor targeting. Adv. Mater. 25, 4504-4510 (2013).
4. Dickinson, B.C., Lin, V.S. & Chang, C.J. Preparation and use of MitoPY1 for imaging hydrogen peroxide in mitochondria of live cells. Nat. Protoc. 8, 1249-1259 (2013).
5. Gu, L. et al. In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles. Nat. Commun. 4, 2326 (2013).
6. Tian, B. & Lieber, C.M. Synthetic nanoelectronic probes for biological cells and tissues. Annu. Rev. Anal. Chem. 6, 31-51 (2013).
7. Hong, G. et al. Through-skull fluorescence imaging of the brain in a new near-infrared window. Nature Photonics 8, 723-730 (2014).
8. Kuo, T.R. et al. AS1411 aptamer-conjugated Gd2O3:Eu nanoparticles for target-specific computed tomography/magnetic resonance/fluorescence molecular imaging. Nano Res. 7, 658-669 (2014).
9. Pan, D. et al. A general strategy for developing cell-permeable photo-modulatable organic fluorescent probes for live-cell super-resolution imaging. Nat. Commun. 5, 5573 (2014).
10. Whitney, M.A. et al. Fluorescent peptides highlight peripheral nerves during surgery in mice. Nat. Biotechnol. 29, 352-356 (2011).
11. Kelderhouse, L.E. et al. Development of tumor-targeted near infrared probes for fluorescence guided surgery. Bioconjug. Chem. 24, 1075-1080 (2013).
12. Nguyen, Q.T. & Tsien, R.Y. Fluorescence-guided surgery with live molecular navigation - a new cutting edge. Nat. Rev. Cancer 13, 653-662 (2013).
13. Alivisatos, A.P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933-937 (1996).
14. Medintz, I.L., Uyeda, H.T., Goldman, E.R. & Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435-446 (2005).
15. Cai, W.B. & Chen, X.Y. Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging. Nat. Protoc. 3, 89-96 (2008).
16. Xing, H. et al. Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging. Biomaterials 33, 1079-1089 (2012).
17. Wu, T.-J. et al. Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds. Nat. Nanotechnol. 8, 682-689 (2013).
18. Jaiswal, J.K., Mattoussi, H., Mauro, J.M. & Simon, S.M. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 21, 47-51 (2003).
19. Chen, F.Q. & Gerion, D. Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett. 4, 1827-1832 (2004).
20. Nam, S.H. et al. Long-term real-time tracking of lanthanide ion doped upconverting nanoparticles in living cells. Angew. Chem. Int. Ed. Engl. 50, 6093-6097 (2011).
21. Duan, H. & Nie, S. Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers: A new route to fluorescent and water-soluble atomic clusters. J. Am. Chem. Soc. 129, 2412-2413 (2007).
22. Huang, C.-C., Yang, Z., Lee, K.-H. & Chang, H.-T. Synthesis of highly fluorescent gold nanoparticles for sensing Mercury(II). Angew. Chem. Int. Ed. Engl. 46, 6824-6828 (2007).
23. Xie, J., Zheng, Y. & Ying, J.Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 131, 888-889 (2009).
24. Connor, E.E., Mwamuka, J., Gole, A., Murphy, C.J. & Wyatt, M.D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1, 325-327 (2005).
25. Sun, I.-C. et al. Heparin-coated gold nanoparticles for liver-specific CT imaging. Chem. Eur. J 15, 13341-13347 (2009).
26. Sokolov, K. et al. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res. 63, 1999-2004 (2003).
27. Javier, D.J., Nitin, N., Levy, M., Ellington, A. & Richards-Kortum, R. Aptamer-targeted gold nanoparticles as molecular-specific contrast agents for reflectance imaging. Bioconjug. Chem. 19, 1309-1312 (2008).
28. Kumar, A. et al. Gold nanoparticles functionalized with therapeutic and targeted peptides for cancer treatment. Biomaterials 33, 1180-1189 (2012).
29. Zhu, L.Y. et al. Reversibly photoswitchable dual-color fluorescent nanoparticles as new tools for live-cell imaging. J. Am. Chem. Soc. 129, 3524-3526 (2007).
30. He, H., Xie, C. & Ren, J. Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging. Anal. Chem. 80, 5951-5957 (2008).
31. Lin, C.-A.J. et al. Synthesis, Characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. Acs Nano 3, 395-401 (2009).
32. Peng, C. et al. Targeted tumor CT imaging using folic acid-modified PEGylated dendrimer-entrapped gold nanoparticles. Polym. Chem. 4, 4412-4424 (2013).
33. Hainfeld, J.F., Slatkin, D.N., Focella, T.M. & Smilowitz, H.M. Gold nanoparticles: a new X-ray contrast agent. Br. J. Radiol. 79, 248-253 (2006).
34. Rabin, O., Perez, J.M., Grimm, J., Wojtkiewicz, G. & Weissleder, R. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat. Mater. 5, 118-122 (2006).
35. Eck, W., Nicholson, A.I., Zentgraf, H., Semmler, W. & Bartling, S. Anti-CD4-targeted gold nanoparticles induce specific contrast enhancement of peripheral lymph nodes in X-ray computed tomography of live mice. Nano Lett. 10, 2318-2322 (2010).
36. Mahmoudi, M., Serpooshan, V. & Laurent, S. Engineered nanoparticles for biomolecular imaging. Nanoscale 3, 3007-3026 (2011).
37. Lee, N., Choi, S.H. & Hyeon, T. Nano-sized CT contrast agents. Adv. Mater. 25, 2641-2660 (2013).
38. Popovtzer, R. et al. Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett. 8, 4593-4596 (2008).
39. Chanda, N. et al. Bombesin functionalized gold nanoparticles show in vitro and in vivo cancer receptor specificity. Proc. Natl. Acad. Sci. U. S. A. 107, 8760-8765 (2010).
40. Kim, D., Jeong, Y.Y. & Jon, S. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. Acs Nano 4, 3689-3696 (2010).
41. Stummer, W. et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncology 7, 392-401 (2006).
42. Moiyadi, A., Syed, P. & Srivastava, S. Fluorescence-guided surgery of malignant gliomas based on 5-aminolevulinic acid: paradigm shifts but not a panacea. Nat. Rev. Cancer 14, 146-146 (2014).
43. Nguyen, Q.T. et al. Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival. Proc. Natl. Acad. Sci. U. S. A. 107, 4317-4322 (2010).
44. Muhammed, M.A.H. et al. Bright, NIR-emitting Au-23 from Au-25: characterization and applications including biolabeling. Chem. Eur. J 15, 10110-10120 (2009).
45. Shang, L., Dong, S. & Nienhaus, G.U. Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nano Today 6, 401-418 (2011).
46. Wu, Z. & Jin, R. On the ligand's role in the fluorescence of gold nanoclusters. Nano Lett. 10, 2568-2573 (2010).
47. Luo, Z. et al. From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters. J. Am. Chem. Soc. 134, 16662-16670 (2012).
48. Zheng, J., Zhou, C., Yu, M. & Liu, J. Different sized luminescent gold nanoparticles. Nanoscale 4, 4073-4083 (2012).
49. Zhou, C. et al. Luminescent gold nanoparticles with mixed valence states generated from dissociation of polymeric Au(I) thiolates. J. Phys. Chem. C 114, 7727-7732 (2010).
50. Hwang, D.W. et al. A nucleolin-targeted multimodal nanoparticle imaging probe for tracking cancer cells using an aptamer. J. Nucl. Med. 51, 98-105 (2010).
PARTII
References
1. Seo, W. S., Lee, J. H., Sun, X. M., Suzuki, Y., Mann, D., Liu, Z., Terashima, M., Yang, P. C., McConnell, M. V., Nishimura, D. G., and Dai, H. J. FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents, Nat. Mater. 2006, 5, 971-976.
2. Jun, Y. W., Lee, J. H., and Cheon, J. Chemical design of nanoparticle probes for high-performance magnetic resonance imaging, Angew. Chem. Int. Ed. 2008, 47, 5122-5135.
3. Hahn, M. A., Singh, A. K., Sharma, P., Brown, S. C., and Moudgil, B. M. Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives, Anal. Bioanal. Chem. 2011, 399, 3-27.
4. Lim, E. K., Huh, Y. M., Yang, J., Lee, K., Suh, J. S., and Haam, S. pH-Triggered drug-releasing magnetic nanoparticles for cancer therapy guided by molecular imaging by MRI, Adv. Mater. 2011, 23, 2436-2442.
5. Xing, H. Y., Bu, W. B., Zhang, S. J., Zheng, X. P., Li, M., Chen, F., He, Q. J., Zhou, L. P., Peng, W. J., Hua, Y. Q., and Shi, J. L. Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging, Biomaterials 2012, 33, 1079-1089.
6. Hyafil, F., Cornily, J. C., Feig, J. E., Gordon, R., Vucic, E., Amirbekian, V., Fisher, E. A., Fuster, V., Feldman, L. J., and Fayad, Z. A. Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography, Nat. Med. 2007, 13, 636-641.
7. Baker, M. The whole picture, Nature 2010, 463, 977-980.
8. Na, H. B., and Hyeon, T. Nanostructured T1 MRI contrast agents, J. Mater. Chem. 2009, 19, 6267-6273.
9. Kumar, R., Roy, I., Ohulchanskky, T. Y., Vathy, L. A., Bergey, E. J., Sajjad, M., and Prasad, P. N. In vivo biodistribution and clearance studies using multimodal organically modified silica nanoparticles, Acs Nano 2010, 4, 699-708.
10. Lee, Y. C., Chen, D. Y., Dodd, S. J., Bouraoud, N., Koretsky, A. P., and Krishnan, K. M. The use of silica coated MnO nanoparticles to control MRI relaxivity in response to specific physiological changes, Biomaterials 2012, 33, 3560-3567.
11. Gao, J. H., Liang, G. L., Cheung, J. S., Pan, Y., Kuang, Y., Zhao, F., Zhang, B., Zhang, X. X., Wu, E. X., and Xu, B. Multifunctional yolk-shell nanoparticles: A potential MRI contrast and anticancer agent, J. Am. Chem. Soc. 2008, 130, 11828-11833.
12. Wang, Y. C., Liu, Y. J., Luehmann, H., Xia, X. H., Brown, P., Jarreau, C., Welch, M., and Xia, Y. N. Evaluating the pharmacokinetics and in vivo cancer targeting capability of Au nanocages by positron emission tomography imaging, Acs Nano 2012, 6, 5880-5888.
13. Huang, C. C., Tsai, C. Y., Sheu, H. S., Chuang, K. Y., Su, C. H., Jeng, U. S., Cheng, F. Y., Lei, H. Y., and Yeh, C. S. Enhancing transversal relaxation for magnetite nanoparticles in MR imaging using Gd3+ chelated mesoporous silica shells, Acs Nano 2011, 5, 3905-3916.
14. Xiong, L. Q., Yang, T. S., Yang, Y., Xu, C. J., and Li, F. Y. Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors, Biomaterials 2010, 31, 7078-7085.
15. Jiang, S., Gnanasammandhan, M. K., and Zhang, Y. Optical imaging-guided cancer therapy with fluorescent nanoparticles, J. R. Soc. Interface 2010, 7, 3-18.
16. Alric, C., Taleb, J., Le Duc, G., Mandon, C., Billotey, C., Le Meur-Herland, A., Brochard, T., Vocanson, F., Janier, M., Perriat, P., Roux, S., and Tillement, O. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging, J. Am. Chem. Soc. 2008, 130, 5908-5915.
17. Xie, J., Chen, K., Huang, J., Lee, S., Wang, J. H., Gao, J., Li, X. G., and Chen, X. Y. PET/NIRF/MRI triple functional iron oxide nanoparticles, Biomaterials 2010, 31, 3016-3022.
18. Hagit, A., Soenke, B., Johannes, B., and Shlomo, M. Synthesis and characterization of dual modality (CT/MRI) core-shell microparticles for embolization purposes, Biomacromolecules 2010, 11, 1600-1607.
19. Kim, D., Yu, M. K., Lee, T. S., Park, J. J., Jeong, Y. Y., and Jon, S. Amphiphilic polymer-coated hybrid nanoparticles as CT/MRI dual contrast agents, Nanotechnology 2011, 22.
20. Narayanan, S., Sathy, B. N., Mony, U., Koyakutty, M., Nair, S. V., and Menon, D. Biocompatible magnetite/gold nanohybrid contrast agents via green chemistry for MRI and CT bioimaging, ACS Appl. Mater. Interfaces 2012, 4, 251-260.
21. Chou, S. W., Shau, Y. H., Wu, P. C., Yang, Y. S., Shieh, D. B., and Chen, C. C. In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging, J. Am. Chem. Soc. 2010, 132, 13270-13278.
22. Lee, N., Cho, H. R., Oh, M. H., Lee, S. H., Kim, K., Kim, B. H., Shin, K., Ahn, T. Y., Choi, J. W., Kim, Y. W., Choi, S. H., and Hyeon, T. Multifunctional Fe3O4/TaOx core/shell nanoparticles for simultaneous magnetic resonance imaging and X-ray computed tomography, J. Am. Chem. Soc. 2012, 134, 10309-10312.
23. de Rosales, R. T. M., Tavare, R., Paul, R. L., Jauregui-Osoro, M., Protti, A., Glaria, A., Varma, G., Szanda, I., and Blower, P. J. Synthesis of Cu-64(II)-bis(dithiocarbamatebisphosphonate) and its conjugation with superparamagnetic iron oxide nanoparticles: In vivo evaluation as dual-modality PET-MRI agent, Angew. Chem. Int. Ed. 2011, 50, 5509-5513.
24. Devaraj, N. K., Keliher, E. J., Thurber, G. M., Nahrendorf, M., and Weissleder, R. F-18 labeled nanoparticles for in vivo PET-CT imaging, Bioconjug. Chem. 2009, 20, 397-401.
25. Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W., Olenych, S., Bonifacino, J. S., Davidson, M. W., Lippincott-Schwartz, J., and Hess, H. F. Imaging intracellular fluorescent proteins at nanometer resolution, Science 2006, 313, 1642-1645.
26. Zhu, L. Y., Wu, W. W., Zhu, M. Q., Han, J. J., Hurst, J. K., and Li, A. D. Q. Reversibly photoswitchable dual-color fluorescent nanoparticles as new tools for live-cell imaging, J. Am. Chem. Soc. 2007, 129, 3524-3526.
27. Keereweer, S., Kerrebijn, J. D. F., van Driel, P., Xie, B. W., Kaijzel, E. L., Snoeks, T. J. A., Que, I., Hutteman, M., van der Vorst, J. R., Mieog, J. S. D., Vahrmeijer, A. L., van de Velde, C. J. H., de Jong, R. J. B., and Lowik, C. Optical image-guided surgery-where do we stand?, Mol. Imaging Biol. 2011, 13, 199-207.
28. Whitney, M. A., Crisp, J. L., Nguyen, L. T., Friedman, B., Gross, L. A., Steinbach, P., Tsien, R. Y., and Nguyen, Q. T. Fluorescent peptides highlight peripheral nerves during surgery in mice, Nat. Biotechnol. 2011, 29, 352-356.
29. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots, Science 1996, 271, 933-937.
30. Lin, C. A. J., Yang, T. Y., Lee, C. H., Huang, S. H., Sperling, R. A., Zanella, M., Li, J. K., Shen, J. L., Wang, H. H., Yeh, H. I., Parak, W. J., and Chang, W. H. Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications, Acs Nano 2009, 3, 395-401.
31. Orndorff, R. L., and Rosenthal, S. J. Neurotoxin quantum dot conjugates detect endogenous targets expressed in live cancer cells, Nano Lett. 2009, 9, 2589-2599.
32. Kobayashi, H., Hama, Y., Koyama, Y., Barrett, T., Regino, C. A. S., Urano, Y., and Choyke, P. L. Simultaneous multicolor imaging of five different lymphatic basins using quantum dots, Nano Lett. 2007, 7, 1711-1716.
33. He, H., Xie, C., and Ren, J. Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging, Anal. Chem. 2008, 80, 5951-5957.
34. Mohan, N., Chen, C. S., Hsieh, H. H., Wu, Y. C., and Chang, H. C. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in caenorhabditis elegans, Nano Lett. 2010, 10, 3692-3699.
35. Hilderbrand, S. A., Shao, F. W., Salthouse, C., Mahmood, U., and Weissleder, R. Upconverting luminescent nanomaterials: application to in vivo bioimaging, Chem. Commun. 2009, 4188-4190.
36. Beaurepaire, E., Buissette, V., Sauviat, M. P., Giaume, D., Lahlil, K., Mercuri, A., Casanova, D., Huignard, A., Martin, J. L., Gacoin, T., Boilot, J. P., and Alexandrou, A. Functionalized fluorescent oxide nanoparticles: Artificial toxins for sodium channel targeting and imaging at the single-molecule level, Nano Lett. 2004, 4, 2079-2083.
37. Lee, H., Yu, M. K., Park, S., Moon, S., Min, J. J., Jeong, Y. Y., Kang, H. W., and Jon, S. Thermally cross-linked superparamagnetic iron oxide nanoparticles: Synthesis and application as a dual Imaging probe for cancer in vivo, J. Am. Chem. Soc. 2007, 129, 12739-12745.
38. Yu, M. K., Jeong, Y. Y., Park, J., Park, S., Kim, J. W., Min, J. J., Kim, K., and Jon, S. Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo, Angew. Chem. Int. Ed. 2008, 47, 5362-5365.
39. Wang, K., Ruan, J., Qian, Q. R., Song, H., Bao, C. C., Zhang, X. Q., Kong, Y. F., Zhang, C. L., Hu, G. H., Ni, J., and Cui, D. X. BRCAA1 monoclonal antibody conjugated fluorescent magnetic nanoparticles for in vivo targeted magnetofluorescent imaging of gastric cancer, J. Nanobiotechnology 2011, 9.
40. Oh, M. H., Lee, N., Kim, H., Park, S. P., Piao, Y., Lee, J., Jun, S. W., Moon, W. K., Choi, S. H., and Hyeon, T. Large-scale synthesis of bioinert tantalum oxide nanoparticles for X-ray computed tomography imaging and bimodal image-guided sentinel lymph node mapping, J. Am. Chem. Soc. 2011, 133, 5508-5515.
41. Cai, W. B., and Chen, X. Y. Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging, Nat. Protoc. 2008, 3, 89-96.
42. Park, S., and Hamad-Schifferli, K. Enhancement of In vitro translation by gold nanoparticle-DNA conjugates, Acs Nano 2010, 4, 2555-2560.
43. Xiao, Z. Y., and Farokhzad, O. C. Aptamer-functionalized nanoparticles for medical applications: Challenges and opportunities, Acs Nano 2012, 6, 3670-3676.
44. Kim, D., Jeong, Y. Y., and Jon, S. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer, Acs Nano 2010, 4, 3689-3696.
45. Gao, H. L., Qian, J., Cao, S. J., Yang, Z., Pang, Z. Q., Pan, S. Q., Fan, L., Xi, Z. J., Jiang, X. G., and Zhang, Q. Z. Precise glioma targeting of and penetration by aptamer and peptide dual-functioned nanoparticles, Biomaterials 2012, 33, 5115-5123.
46. Hwang, D. W., Ko, H. Y., Lee, J. H., Kang, H., Ryu, S. H., Song, I. C., Lee, D. S., and Kim, S. A nucleolin-targeted multimodal nanoparticle imaging probe for tracking cancer cells using an aptamer, J. Nucl. Med. 2010, 51, 98-105.
47. Bridot, J. L., Faure, A. C., Laurent, S., Riviere, C., Billotey, C., Hiba, B., Janier, M., Josserand, V., Coll, J. L., Vander Elst, L., Muller, R., Roux, S., Perriat, P., and Tillement, O. Hybrid gadolinium oxide nanoparticles: Multimodal contrast agents for in vivo imaging, J. Am. Chem. Soc. 2007, 129, 5076-5084.
48. Kryza, D., Taleb, J., Janier, M., Marmuse, L., Miladi, I., Bonazza, P., Louis, C., Perriat, P., Roux, S., Tillement, O., and Billotey, C. Biodistribution study of nanometric hybrid gadolinium oxide particles as a multimodal SPECT/MR/Optical imaging and theragnostic agent, Bioconjug. Chem. 2011, 22, 1145-1152.
49. Zhou, L. J., Gu, Z. J., Liu, X. X., Yin, W. Y., Tian, G., Yan, L., Jin, S., Ren, W. L., Xing, G. M., Li, W., Chang, X. L., Hu, Z. B., and Zhao, Y. L. Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging, J. Mater. Chem. 2012, 22, 966-974.
50. Petoral, R. M., Soderlind, F., Klasson, A., Suska, A., Fortin, M. A., Abrikossova, N., Selegard, L., Kall, P. O., Engstrom, M., and Uvdal, K. Synthesis and characterization of Tb3+ doped Gd2O3 nanocrystals: A bifunctional material with combined fluorescent labeling and MRI contrast agent properties, J. Phys. Chem. C 2009, 113, 6913-6920.
51. Chang, C. K., Kimura, F., Kimura, T., and Wada, H. Preparation and characterization of rod-like Eu:Gd2O3 phosphor through a hydrothermal routine, Mater. Lett. 2005, 59, 1037-1041.
52. Louis, C., Bazzi, R., Flores, M. A., Zheng, W., Lebbou, K., Tillement, O., Mercier, B., Dujardin, C., and Perriat, P. Synthesis and characterization of Gd2O3:Eu3+ phosphor nanoparticles by a sol-lyophilization technique, J. Solid State Chem. 2003, 173, 335-341.
53. Goldys, E. M., Drozdowicz-Tomsia, K., Sun, J. J., Dosev, D., Kennedy, I. M., Yatsunenko, S., and Godlewski, M. Optical characterization of Eu-doped and undoped Gd2O3 nanoparticles synthesized by the hydrogen flame pyrolysis method, J. Am. Chem. Soc. 2006, 128, 14498-14505.
54. Mohapatra, S., Mallick, S. K., Maiti, T. K., Ghosh, S. K., and Pramanik, P. Synthesis of highly stable folic acid conjugated magnetite nanoparticles for targeting cancer cells, Nanotechnology 2007, 18.
55. Vanleeuwen, D. A., Vanruitenbeek, J. M., Dejongh, L. J., Ceriotti, A., Pacchioni, G., Haberlen, O. D., and Rosch, N. Quenching of magnetic-moments by ligand-metal interactions in nanosized magnetic metal-clusters, Phys. Rev. Lett. 1994, 73, 1432-1435.
56. Jacobsohn, L. G., Bennett, B. L., Muenchausen, R. E., Tornga, S. C., Thompson, J. D., Ugurlu, O., Cooke, D. W., and Sharma, A. L. L. Multifunction Gd2O3:Eu nanocrystals produced by solution combustion synthesis: Structural, luminescent, and magnetic characterization, J. Appl. Phys. 2008, 103.
57. Caravan, P. Strategies for increasing the sensitivity of gadolinium based MRI contrast agents, Chem. Soc. Rev. 2006, 35, 512-523.
PART III
1. D. Linden and T.B. Reddy (eds) Handbook of Batteries McGraw-Hill: New York, 2002, pp 35.1–35.9.
2. P. Sengodu and A.D. Deshmukh, Conducting polymers and their inorganic composites for advanced Li-ion batteries: a review, RSC Adv., 2015, 5, 42109-42130.
3. H. Wu, G. Yu, L. Pan, N. Liu, M. McDowell, Z. Bao and Y. Cui, Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles, Nature comm., 2013, 4, 1943–1948.
4. G. Li, X. Wang and X. Ma, Nb2O5-Carbon core-shell nanocomposite as anode material for lithium ion battery, J. Energy Chem., 2013, 22, 357–362.
5. W. Wang, Q. Sa, J. Chen, Y. Wang, H. Jung and Y. Yin, Porous TiO2/C nanocomposite shells as a high-performance anode material for lithium-ion batteries, ACS Applied Mater. Interfaces, 2013, 5, 6478–6483.
6. H. Liu, D. Chen, G. Wang and S. Zhang, Ordered mesoporous core/shell SnO2/C nanocomposite as high-capacity anode material for lithium-ion batteries, Chem. A European J., 2013, 19, 16897–16901.
7. Y. Yao, J. Zhang, L. Xue, T. Huang and A. Yu, Carbon-Coated SiO2 nanoparticles as anode material for lithium ion batteries, J. Power Sources, 2011,196, 10240–10243.
8. B.K. Guo, J. Shu, Z.X. Wang, H. Yang, L.H. Shi, Y. Liu and L.Q. Chen, Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries, Electrochem. Commun., 2008, 10. 1876–1878.
9. E. Allcorn and A. Manthiram, FeSb2-Al2O3-C nanocomposite anodes for lithium-ion batteries, ACS Appl. Mater. Interfaces, 2014, 6, 10886–10891.
10. N. Liu, K. Huo, M. McDowell, J. Zhao and Y. Cui, Rice husks as a sustainable source of nanostructured silicon for high performance li-ion battery anodes, Sci. Rep., 2013, 3, 1919–1925.
11. U. S. Geological Survey, Mineral commodity summaries, 2013, pp. 90–91.
12. M. Martos, J. Morales, L. Sanchez, R. Ayouchi, D. Leinen, F. Martin and J. Barrado, Electrochemical properties of lead oxide films obtained by spray pyrolysis as negative electrodes for lithium secondary batteries, Electrochim. Acta, 2001, 46, 2939–2948.
13. L. Yuan, Z. Guo, K. Konstantinov, H. Liu and S. Dou, Nano-Structured spherical porous sno2 anodes for lithium-ion batteries, J. Power sources, 2006, 159, 345–348.
14. M. Martos, J. Morales and L. Sanchez, Lead-based systems as suitable anode materials for li-ion batteries, Electrochim. Acta, 2003, 48, 615 –621.
15. Z. Liu and Lee, Electrochemical performance of Pb3(PO4)2 anodes in rechargeable lithium batteries, J Power Sources, 2001, 97, 247–250.
16. S. Ng, J. Wang, K. Konstantinov, D. Wexler, J. Chen and H. Liu, Spray pyrolyzed PbO-Carbon nanocomposites as anode for lithium-ion batteries, J. Electrochem. Soc., 2006, 153, A787–A793.
17. Q. Pan, Z. Wang, J. Liu, G. Yin and M. Gu, PbO@C core-shell nanocomposites as an anode material of lithium-ion batteries, Electrochem. Commun., 2009, 11, 917–920.
18. Z. Yuan, Z. Peng, Y. Chen and H. Liu, Synthesis and electrochemical performance of nanosized tin lead composite oxides as lithium storage materials, Mater. Chem. Phys., 2010, 120, 331– 335.
19. Z. Chen, Y. Cao, J. Qian, X. Ai and H.J. Yang, Pb-sandwiched nanoparticles as anode material for lithium-ion batteries, Solid State Electrochem., 2012, 16, 291–295.
20. F. Tu, Y. Huo, J. Xie, G. Cao, T. Zhu, X. Zhao and S. Zhang, Reduced graphene oxide induced confined growth of pbte crystals and enhanced electrochemical Li-storage properties, RSC Adv., 2013, 3, 23612– 23619.
21. S. Wood, K. Klavetter, A. Heller and C. Mullins, Fast Lithium transport in PbTe for lithium-ion battery anodes, J. Mater. Chem. A, 2014, 2, 7238–7243.
22. G.K. Min, S. Sim and J. Cho, Novel core-shell Sn-Cu anodes for lithium rechargeable batteries prepared by a redox-transmetalation reaction, Adv. Mater., 2010, 22, 5154–5158.
23. S. Iwamura, H. Nishihara and T. Kyotani, Effect of buffer size around nanosilicon anode particles for lithium-ion batteries, J. Phys. Chem. C, 2012, 116, 6004–6011.
24. V. Timar, R.L. Ciceo and I. Ardelean, Structural studies of iron doped B2O3•0.7PbO•0.3Ag2O glasses by FT-IR and Raman spectroscopies, Semiconductor physics, Quant. Elect. and Optoelect., 2008, 11, 221-225.
25. P.A. Christensen, S.W.M. Jones and A. Hamnett, An insitu FTIR spectroscopic study of the electrochemical oxidation of ethanol at a Pb-modified polycrystalline Pt electrode immersed in aqueous KOH, Phys. Chem. Chem. Phys., 2013, 15, 17268–17276.
26. Y. Borodko, S.E. Habas, M. Koebel, P.D. Yang, H. Frei and G.A. Somorjai, Probing the interaction of poly(vinylpyrrolidone) with platinum nanocrystals by Uv−Raman and FTIR, J. Phys. Chem. B, 2006, 110, 23052–23059.
27. A.C. Ferrari and J. Robertson, Resonant raman spectroscopy of disordered, amorphous, and diamond like carbon, J. Phys. Rev. B, 2001, 64, 075414.
28. B. Balamurugan, B.R. Mehta, D.K. Avasthi, F. Singh, A.K. Arora And M. Rajalakshmi, Modifying the Nanocrystalline Characteristics-structure, size, and surface states of copper oxide thin films by high-energy heavy-ion irradiation, J Appl Phys., 2002, 92, 3304–3310.
29. K. Draou, N. Bellakhal, B.G. Cheron and J.L. Brisset, Heat transfer to metals in low pressure oxygen plasma: application to oxidation of the 90Cu–10Zn Alloy, Mater. Chem. Phys., 1998, 58, 212–220.
30. M. Salavati-Niasari, F. Mohandes and F. Davar, Preparation of PbO nanocrystals via decomposition of lead oxalate, Polyhedron, 2009, 28, 2263–2267.
31. M. Kashani-Motlagh and M. Mahmoudabad, Synthesis and characterization of lead oxide nano-powders by sol-gel method, J. Sol-gel science and technology, 2011, 59, 106–110.
32. F. Gao, H. Pang, S. Xu and Q. Lu, Copper-based nanostructures: promising antibacterial agents and photocatalysts, Chem. Comm., 2009, 3571– 3573.
33. S. Prakash, C. Charan, A. Singh and V. Shahi, Mixed metal nanoparticles loaded catalytic polymer membrane for solvent free selective oxidation of benzyl alcohol to benzaldehyde in a reactor, Applied Cat. B: Environ., 2013, 132, 62–69.
34. Y. Li, M. Trujillo, E. Fu, B. Patterson, L. Fei, Y. Xu, S. Deng, S. Smirnov and H. Luo, Bismuth Oxide: a new lithium-ion battery anode, J. Mater. Chem. A, 2013, 1, 12123–12127.
35. M.S. Chandrasekar and S. Mitra, Electrodeposition of iron phosphide on copper substrate as conversion negative electrode for lithium-ion battery application, Ionics, 2014, 20, 137–140.
36. K. Cheirmadurai, S. Biswas, R. Murali, and P. Thanikaivelan, Green synthesis of copper nanoparticles and conducting nanobiocomposites using plant and animal sources, RSC Adv., 2014, 4, 19507-19511.
37. B. Wang, J.L. Cheng, Y.P. Wu, D. Wang and D.N. He, Porous NiO fibers prepared by electrospinning as high performance anode materials for lithium ion batteries, Electrochem. Commun., 2012, 23, 5.
38. G. Gao, S. Lu, B. Dong, Z. Zhang, Y. Zheng and S. Ding, One-pot synthesis of carbon coated Fe3O4 nanosheets with superior lithium storage capability, J. Mater. Chem. A, 2015, 3, 4716-4721.
39. Y. Lei, Z.H. Huang, Y. Yang, W. Shen, Y. Zheng, H. Sun and F. Kang, Porous mesocarbon microbeads with graphitic shells: constructing a high-rate, high-capacity cathode for hybrid supercapacitor, Sci. Rep., 2013, 3, 2477–2462.
40. Y. Su, S. Li, D. Wu, F. Zhang, H. Liang, P. Gao, C. Cheng and X. Feng, Two-dimensional carbon-coated graphene/metal oxide hybrids for enhanced lithium storage, ACS Nano, 2012, 6, 8349–8356.
41. L. Yue, H. Zhong and L. Zhang, Enhanced reversible lithium storage in a nano-Si/MWCNT free-standing paper electrode prepared by a simple filtration and post sintering process, Electrochim. Acta, 2012, 76, 326–332.
42. X. Wang, Z. Li, Z. Zhang, Q. Li, E. Guo and C. Wang, Yin, L. Mo-doped SnO2 mesoporous hollow structured spheres as anode materials for high-performance lithium ion batteries, Nanoscale, 2015, 7, 3604-3613.
43. J. Feng, L. Ci, Y. Qi, N. Lun, S. Xiong and Y. Qian, Low temperature synthesis of lead germanate (PbGeO3)/polypyrrole (Ppy) nanocomposites and their lithium storage performance, Materials Res. Bulletin, 2014, 57, 238–242.
44. C.D. Wessells, R.A. Huggins and Y. Cui, Copper Hexacyanoferrate battery electrodes with long cycle life and high power, Nature Comm., 2011, 2, 550.
45. O. Mao, R.L. Turner, I.A. Courtney, B.D. Fredericksen, M.I. Buckett, L.J. Krause and J.R. Dahn, Active/Inactive nanocomposites as anodes for Li ‐ ion batteries, Electrochem. Solid-State Lett., 1999, 2, 3–5.
46. S.H. Park and W.J. Lee, Hierarchically mesoporous carbon nanofiber/mn3o4 coaxial nanocables as anodes in lithium ion batteries, J. Power Sources, 2015, 281, 301–309.
47. D.T. Ngo, R.S. Kalubarme, H.T.T. Le, C.N. Park and C.J. Park, Conducting additive-free amorphous GeO2/C composite as a high capacity and long-term stability anode for lithium ion batteries, Nanoscale, 2015, 7, 2552–2560.
48. X. Bai, B. Wang, H. Wang and J. Jiang, Preparation and electrochemical properties of profiled carbon fiber-supported Sn anodes for lithium-ion batteries, J. Alloys and Compounds, 2015, 628, 407–412.
49. S. Li and J. Huang, A nanofibrous silver-nanoparticle/titania/carbon composite as an anode material for lithium ion batteries, J. Mater. Chem. A, 2015, 3, 4354-4360,
50. W. Qin, T. Chen, L. Pana, L. Niu, B. Hu, D. Li, J. Li and Z. Sun, MoS2-reduced graphene oxide composites via microwave assisted synthesis for sodium ion battery anode with improved capacity and cycling performance, Electrochim. Acta, 2015, 153, 55–61.
51. X. Niu, H. Zhou, Z. Li, X. Shan and X. Xi, Carbon-coated SnSb nanoparticles dispersed in reticular structured nanofibers for lithium-ion battery anodes, J. Alloys and Compounds, 2015, 620, 308–314.
52. J. Li, W. Wen, G. Xu, M. Zou, Z. Huang and L. Guan, Fe-added Fe3C Carbon nanofibers as anode for Li ion batteries with excellent low-temperature performance, Electrochim. Acta, 2015, 153, 300–305.
53. Z. Yang, S. Zhao, W. Jiang, X. Sun, Y. Meng, C. Sun and S. Ding, Carbon-supported SnO2 nanowire arrays with enhanced lithium storage properties, Electrochimica Acta, 2015,158, 321–326.
54. Y. Liang, L. Cai, L. Chen, X. Lin, R. Fu, M. Zhang and D. Wu, Silica nanonetwork confined in nitrogen-doped ordered mesoporous carbon framework for high-performance lithium-ion battery anodes, Nanoscale, 2015,7, 3971-3975.
55. G.T.K. Fey, C.S. Chang and T.P. Kumar, Synthesis and surface treatment of LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries, J. Solid State Electrochem., 2010, 14, 17–26.
56. A.R. Armstrong, M. Holzapfel, P. Novak, C.S. Johnson, S.H. Kang, M.M. Thackeray and P.G. Bruce, Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2 , J. Am. Chem. Soc. 2006, 128, 8694 –8698.
PART IV
1. M. Armand, J.M. Tarascon, Nature, 451 (2008) 652-657.
2. J.M. Tarascon, M. Armand, Nature, 414 (2001) 359-367.
3. U. Kasavajjula, C. Wang, A.J. Appleby, J. Power Sources, 163 (2007) 1003-1039.
4. X.H. Liu, L. Zhong, S. Huang, S.X. Mao, T. Zhu, J.Y. Huang, ACS Nano, 6 (2012) 1522-1531.
5. M.T. McDowell, S.W. Lee, J.T. Harris, B.A. Korgel, C. Wang, W.D. Nix, Y. Cui, Nano Lett., 13 (2013) 758-764.
6. H. Wu, Y. Cui, Nano Today, 7 (2012) 414-429.
7. D. Aurbach, J. Power Sources, 89 (2000) 206-218.
8. C.K. Chan, R. Ruffo, S.S. Hong, Y. Cui, J. Power Sources, 189 (2009) 1132-1140.
9. H. Kim, M. Seo, M.H. Park, J. Cho, Angew. Chem. Int. Ed., 49 (2008) 2146-2149.
10. C.K. Chan, Nat. Nanotech., 3 (2008) 31-35.
11. L.F. Cui, Y. Yang, C.M. Hsu, Y. Cui, Nano. Lett., 9 (2009) 3370-3374.
12. C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, Nat Nanotechnol, 3 (2008) 31-35.
13. M.H. Park, Nano Lett., 9 (2009) 3844-3847.
14. T. Song, Nano. Lett., 10 (2010) 1710-1716.
15. H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao, M.T. McDowell, S.W. Lee, A. Jackson, Y. Yang, L. Hu, Y. Cui, Nat Nanotechnol, 7 (2012) 310-315.
16. N. Liu, Nano. Lett., 12 (2012) 3315-3321.
17. N. Liu, Z. Lu, J. Zhao, M.T. McDowell, H.W. Lee, W. Zhao, Y. Cui, Nat Nanotechnol, 9 (2014) 187-192.
18. X. Li, P. Meduri, X. Chen, W. Qi, M.H. Engelhard, W. Xu, F. Ding, J. Xiao, W. Wang, C. Wang, J.-G. Zhang, J. Liu, J. Mater. Chem., 22 (2012) 11014-11017.
19. Y. Yao, Nano. Lett., 11 (2011) 2949-2954.
20. H. Kim, B. Han, J. Choo, J. Cho, Angew. Chem. Int. Ed., 47 (2008) 10151-10154.
21. A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, G. Yushin, Nat Mater, 9 (2010) 353-358.
22. A. Magasinski, Nat. Mater., 9 (2010) 353-358.
23. D.S. Jung, T.H. Hwang, S.B. Park, J.W. Choi, Nano Lett., 13 (2013) 2092-2097.
24. S.H. Ng, J. Wang, K. Konstantinov, D. Wexler, S.Y. Chew, Z.P. Guo, H.K. Liu, J. Power Sources, 174 (2007) 823-827.
25. J.S. Bridel, T. Azaïs, M. Morcrette, J.M. Tarascon, D. Larcher, Chem. Mater., 22 (2009) 1229-1241.
26. A. Magasinski, ACS Appl. Mater. Interf., 2 (2010) 3004-3010.
27. I. Kovalenko, Science, 333 (2011) 75-79.
28. M. Wu, X. Xiao, N. Vukmirovic, S. Xun, P.K. Das, X. Song, P. Olalde-Velasco, D. Wang, A.Z. Weber, L.W. Wang, V.S. Battaglia, W. Yang, G. Liu, J. Am. Chem. Soc., 135 (2013) 12048-12056.
29. H. Zhao, Z. Wang, P. Lu, M. Jiang, F. Shi, X. Song, Z. Zheng, X. Zhou, Y. Fu, G. Abdelbast, X. Xiao, Z. Liu, V.S. Battaglia, K. Zaghib, G. Liu, Nano Lett., 14 (2014) 6704-6710.
30. G. Liu, S. Xun, N. Vukmirovic, X. Song, P. Olalde-Velasco, H. Zheng, V.S. Battaglia, L. Wang, W. Yang, Adv. Mater., 23 (2011) 4679-4683.
31. S.-J. Park, H. Zhao, G. Ai, C. Wang, X. Song, N. Yuca, V.S. Battaglia, W. Yang, G. Liu, J. Am. Chem. Soc., 137 (2015) 2565-2571.
32 T.W. Kwon, Y.K. Jeong, I. Lee, T.S. Kim, J.W. Choi, A. Coskun, Adv. Mater., 26 (2014) 7979-7985.
33. H. Wu, G. Yu, L. Pan, N. Liu, M.T. McDowell, Z. Bao, Y. Cui, Nat Commun, 4 (2013) 1943.
34. Y. Wang, H.D. Tran, L. Liao, X. Duan, R.B. Kaner, J. Am. Chem. Soc., 132 (2010) 10365-10373.
35. N. Ding, J. Xu, Y. Yao, G. Wegner, I. Lieberwirth, C. Chen, J. Power Sources, 192 (2009) 644-651.
36. M. Trchová, J. Stejskal, Pure Appl. Chem., 83 (2011).
37. J. Stejskal, D. Hlavatá, P. Holler, M. Trchová, J. Prokeš, I. Sapurina, Polym. Int., 53 (2004) 294-300.
38. T.E. Olinga, J. Fraysse, J.P. Travers, A. Dufresne, A. Pron, Macromolecules, 33 (2000) 2107-2113.
39. B. Lestriez, S. Bahri, I. Sandu, L. Roué, D. Guyomard, Electrochem. Commun., 9 (2007) 2801-2806.
40. J. Tu, L. Hu, W. Wang, J. Hou, H. Zhu, S. Jiao, J. Electrochem. Soc., 160 (2013) A1916-A1921.