研究生: |
黃致柔 Jyh-Rou Huang |
---|---|
論文名稱: |
利用拉曼光譜探討龍門山斷層帶的碳質物特徵 Characteristics of Carbonaceous Materials in the Fault Zone of the Longmen Shan Fault Belt, China, by Raman Spectroscopy |
指導教授: |
宋聖榮
Song, Sheng-Rong 葉恩肇 Yeh, En-Chao |
學位類別: |
碩士 Master |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 汶川地震科學鑽探計畫 、碳質物拉曼光譜 、石墨化作用 、主要滑移帶 |
英文關鍵詞: | the Wenchuan earthquake Fault Drilling Project (WFSD), Raman spectrum of carbonaceous material (RSCM), graphitization, principal slip zone |
DOI URL: | https://doi.org/10.6345/NTNU202205565 |
論文種類: | 學術論文 |
相關次數: | 點閱:159 下載:6 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
西元2008年Mw7.9的汶川地震,分別造成了270公里的映秀-北川同震地表破裂及80公里的安縣-灌縣地表破裂。為了瞭解此次地震的機制及相關資訊,除了地表的研究,也啟動了汶川地震科學鑽探計畫(WFSD)。目前,已知深鑽計畫一號孔的岩芯內含有豐富的碳質物,並在可能之活動斷層帶內發現碳質物有不同的石墨化作用。另外,岩石力學實驗的佐證得知,龍門山斷層帶的碳質物會因斷層作用產生石墨化作用,而滑動時的動摩擦係數也相當低,表示滑動時產生弱化行為。雖然瞭解龍門山斷層帶內碳質物之石墨化作用與斷層作用有關,但目前並未有任何研究針對此斷層帶內的碳質物特徵進行解析。本研究採集深鑽計畫一號孔的斷層帶樣本(2008年汶川地震之活動斷層帶與深部斷層帶)及九龍槽溝地表露頭,並利用拉曼光譜分析來瞭解碳質物的特徵及相對應之石墨化程度,進而提供龍門山斷層可能的斷層演化及構造活動史。
碳質物拉曼光譜分析結果指出,汶川地震活動斷層帶的黑色斷層泥之碳質物特徵與斷層作用極為相關,造成石墨化作用的相關機制包含剪應力與應變,以及斷層滑移時所產生的摩擦熱之溫度。此外,實驗發現2008年汶川地震的主要滑移帶有較佳的石墨化碳質物;暗示其他碳質物石墨化程度較高之處為規模較大的古地震事件發生之位置。汶川地震深部斷層帶之碳質物特徵與活動斷層帶相似,包含著斷層作用所產生的摩擦熱之溫度及剪應力與應變。
總體來看,相較於活動斷層帶,深部斷層帶之碳質物有較高的石墨化程度,顯示著在龍門山斷層帶的滑移歷史上,深部斷層帶遭受過較多次的斷層作用,可能為較成熟的斷層帶,又因為此處石墨化程度高,摩擦係數較低,使應力不易集中,易以潛移的方式釋放。相對的,活動斷層帶可能為較年輕的斷層帶,碳質物的豐度較高,應力相對較易集中,進而產生較大的滑移,並伴隨著大地震。這或許可為2008汶川地震是在較淺部的斷層帶發生而非在深部斷層帶提供一個解釋。
On 12 May 2008, the Mw7.9 Wenchuan earthquake occurred in the Longmen Shan fault belt (China), and produced 270 km-long and 80 km-long surface coseismic rupture along the Yingxiu-Beichuan fault and Anxian-Guanxian fault, respectively. To retrieve information of the earthquake physics, the Wenchuan earthquake Fault Scientific Drilling project (WFSD-1) was conducted to a depth of 1,200 m in 2009. In the WFSD-1, the fault gouge contains carbonaceous materials (CMs) within the active fault zone, and the principal slip zone (PSZ) corresponding to the 2008 Wenchuan earthquake was recognized at the depth of 590 m. Rock deformation experiments suggest that graphitization occurred and fault was weak during the 2008 Wenchuan earthquake.
The graphitization process was determined from natural and experimental observation, but the characteristics of CMs of the Longmen Shan fault remain unknown. Here we characterize CMs of fault zone materials from both WFSD-1 and outcrop with Raman analysis to unravel the associated mechanism of graphitization and fault mechanics.
The results of Raman spectra of carbonaceous materials (RSCM) of FZ590 are suggested to be resulted from frictional heating and shearing. Coincidentally, graphitization process seems to occur in the PSZ corresponding to the 2008 Wenchuan earthquake. We further infer other highly graphitizated zones could be a paleo-signature of ancient seismic events. The RSCM of FZ760 is similar to the one of FZ590, and it presumably suggests that the similar mechanisms were occurred. High degree of graphitization within FZ760 seems to be resulted from many coseismic events, and it suggests that FZ760 is mature fault zone. We surmise that during interseismic periods, the abundant CMs (high friction) in fault gouge of FZ590 could accumulate stress and result in large slips afterward, instead of occurring in FZ760 which contains abundant graphite (low friction) in fault gouge and can easily releases stress.
楊昭男(2000)。石英脈形成的先後關係,臺灣鑛業,62(4),16-26頁。
黃怡禎(2002)。礦物學,地球科學文教基金會,共686頁。
Beyssac, O., B. Goffe, C. Chopin, and J. N. Rouzaud, (2002a), Raman spectra of carbonaceous material in metasediments: a new geothermometer, Journal of Metamorphic Geology, 20(9), 859-871.
Beyssac, O., J. N. Rouzaud, B. Goffe, F. Brunet, and C. Chopin, (2002b), Graphitization in a high-pressure, low-temperature metamorphic gradient: a Raman microspectroscopy and HRTEM study, Contributions to Mineralogy and Petrology, 143(1), 19-31.
Beyssac, O., B. Goffe, J. P. Petitet, E. Froigneux, M. Moreau, and J. N. Rouzaud, (2003), On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy, Spectrochimica Acta Part A, 59(10), 2267-2276.
Boullier, A. M., (2011), Fault-zone geology: lessons from drilling through the Nojima and Chelungpu faults, Geological Society London Special Publications, 359, 17-37.
Brodsky, E., Ma, K. F., Mori, J., Saffer, D. M., (2009), Rapid response fault drilling past, present, and future. The ICDP/SCEC International Workshop of Rapid Response Fault Drilling. Tokyo, Japan, Nov.17-19.
Brodsky, E. E., Li, H., Mori, J. J., Kano, Y., and Xue, L., (2012), Frictional stress measured through temperature profiles in the Wenchuan Scientific Fault zone Drilling project. EOS (Transactions, American Geophysical Union), 93, Fall Meeting Supplementary, Abstract T44B-07.
Bustin, R. M., J. V. Ross, and J. N. Rouzaud, (1995), Mechanisms of Graphite Formation from Kerogen - Experimental-Evidence, International Journal of Coal Geology, 28(1), 1-36.
Caine, J. S., J. P. Evans, and C. B. Forster, (1996), Fault zone architecture and permeability structure, Geology, 24(11), 1025-1028.
Chen, J. Y., X. S. Yang, Q. B. Duan, T. Shimamoto, and C. J. Spiers, (2013), Importance of thermochemical pressurization in the dynamic weakening of the Longmenshan Fault during the 2008 Wenchuan earthquake: Inferences from experiments and modeling, Journal of Geophysical Research-Solid Earth, 118(8), 4145-4169.
Chester, F. M., J. P. Evans, and R. L. Biegel, (1993), Internal Structure and Weakening Mechanisms of the San-Andreas Fault, Journal of Geophysical Research-Solid Earth, 98(B1), 771-786.
Chester, J. S., F. M. Chester, and A. K. Kronenberg, (2005), Fracture surface energy of the Punchbowl fault, San Andreas system, Nature, 437(7055), 133-136.
Clark, M. K., and L. H. Royden, (2000), Topographic ooze: Building the eastern margin of Tibet by lower crustal flow, Geology, 28(8), 703-706.
Crespo, E., J. Luque, J. F. Barrenechea, and M. Rodas, (2005), Mechanical graphite transport in fault zones and the formation of graphite veins, Mineralogical Magazine, 69(4), 463-470.
Deng, Q. D., Chen, S. F., and Zhao, X. L, (1994). Tectonics, Seismisity and Dynamics of Longmenshan Mountains and It's Adjacent Regions. Seismology and Geology, 16(4): 389-403.
Densmore, A. L., M. A. Ellis, Y. Li, R. J. Zhou, G. S. Hancock, and N. Richardson, (2007), Active tectonics of the Beichuan and Pengguan faults at the eastern margin of the Tibetan Plateau, Tectonics, 26(4).
Faulkner, D. R., C. A. L. Jackson, R. J. Lunn, R. W. Schlische, Z. K. Shipton, C. A. J. Wibberley, and M. O. Withjack, (2010), A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones, Journal of Structural Geology, 32(11), 1557-1575.
Fadini, A. and F.M. Schnepel, (1989), Vibrational spectroscopy-methods and applications. Ellis Horwood Limited, England, 205.
Fu, B. H., P. L. Shi, H. D. Guo, S. Okuyama, Y. Ninomiya, and S. Wright, (2011), Surface deformation related to the 2008 Wenchuan earthquake, and mountain building of the Longmen Shan, eastern Tibetan Plateau, Journal of Asian Earth Sciences, 40(4), 805-824.
Green, M. H., J. B. Green, and P. L. Faulkner, (1983), Effects of Temperature on Chylomicron Metabolism, American Journal of Clinical Nutrition, 37(4), 725-725.
Hilgers, C., and J. L. Urai, (2002), Microstructural observations on natural syntectonic fibrous veins: implications for the growth process, Tectonophysics, 352(3-4), 257-274.
Kumar, N., S. Dash, A. K. Tyagi, and B. Raj, (2011), Super low to high friction of turbostratic graphite under various atmospheric test conditions, Tribology International, 44(12), 1969-1978.
Kuo, L. W., S. R. Song, E. C. Yeh, and H. F. Chen, (2009), Clay mineral anomalies in the fault zone of the Chelungpu Fault, Taiwan, and their implications, Geophysical Research Letters, 36.
Kuo, L. W., S. R. Song, E. C. Yeh, H. F. Chen, and J. L. Si, (2012), Clay mineralogy and geochemistry investigations in the host rocks of the Chelungpu fault, Taiwan: Implication for faulting mechanism, Journal of Asian Earth Sciences, 59, 208-218.
Kuo, L. W., H. B. Li, S. A. F. Smith, G. Di Toro, J. Suppe, S. R. Song, S. Nielsen, H. S. Sheu, and J. L. Si, (2014), Gouge graphitization and dynamic fault weakening during the 2008 Mw 7.9 Wenchuan earthquake, Geology, 42(1), 47-50.
Li, H. B., Fu, X. F., Van der Woerd J et al., (2008). Co-seismic surface rupture and dextral-slip oblique trusting of the Ms8.0 Wenchuan earthquake. Acta Geoloica Sinica, 35(5) : 803-813(in Chinese with English abstract).
Li, H. B., et al., (2013), Characteristics of the fault-related rocks, fault zones and the principal slip zone in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1), Tectonophysics, 584, 23-42.
Li, Y., Zhou, R. J., Densmore A. L. et al., (2006), Geomorphic evidence for the late Cenozoic strike-slipping and thrusting in Longmen mountains at the eastern margin of the Tiberan Plateau. Quaternary Sciences, 26(1): 40-51 (in Chinese with English abstract).
Liu, D. L., H. B. Li, T. Q. Lee, Y. M. Chou, S. R. Song, Z. M. Sun, M. L. Chevalier, and J. L. Si, (2014), Primary rock magnetism for the Wenchuan earthquake fault zone at Jiulong outcrop, Sichuan Province, China, Tectonophysics, 619, 58-69.
Liu, J., Zhang, Z.H., Wen, L., Sun, J., Xing, X.C., Hu, G.Y., Xu, Q., Tapponnier, P., Zeng, L.S., Ding, L., Liu, Y.L., (2008). The Ms 8.0 Wenchuan earthquake co-seismic rupture and its tectonic implications: an out of sequence thrusting event with slip partitioned on multiple faults. Acta Geologica Sinica 82 (12), 1707–1722 (in Chinese with English abstract).
Ma, K. F., et al., (2006), Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project, Nature, 444(7118), 473-476.
Mckenzie, D., and J. N. Brune, (1972), Melting on fault planes during large earthquakes, Geophysical Journal of the Royal Astronomical Society, 29(1), 65-78.
McMillan, P. F., (1985), Vibrational spectroscopy in the mineral sciences. Mineralogical Society of America, 16, 9-63.
McMillan, P. F. and A. M. Hofmeister, (1988), Infrared and Raman spectroscopy, in “Spectroscopic Methods in Mineralogy and Geology”. Rev. Mineral., 18, 99-160.
M.D. Zoback, S. Hickman, W. Ellsworth, (2007), The role of fault zone drilling. Geophysics, 4: 649-674.
Oohashi, K., T. Hirose, and T. Shimamoto, (2011), Shear-induced graphitization of carbonaceous materials during seismic fault motion: rxperiments and possible implications for fault mechanics, Journal of Structural Geology, 33(6), 1122-1134.
Oohashi, K., T. Hirose, K. Kobayashi, and T. Shimamoto, (2012), The occurrence of graphite-bearing fault rocks in the Atotsugawa fault system, Japan: origins and implications for fault creep, Journal of Structural Geology, 38, 39-50.
Oshiman, N., M. Ando, and H. Ito, (2001), Part I: Geophysical probing of the Nojima Fault Zone - Preface, Island Arc, 10(3-4), 197-198.
Pei, J. L., Li, H. B., Si J. L., et a., (2009). Surface building deformation caused by Wenchuan earthquake (Ms8.0) and its tectonic implications. Quaternary Sciences, 29(3): 513-523 (in Chinese with English abstract).
Ross, J. V., and R. M. Bustin, (1990), The role of strain-Energy in creep graphitization of anthracite, Nature, 343(6253), 58-60.
Rouzaud, J. N., and A. Oberlin (1989), Structure, Microtexture, and optical-properties of anthracene and saccharose-based carbons, Carbon, 27(4), 517-529.
Salver-Disma, F., J. M. Tarascon, C. Clinard, and J. N. Rouzaud, (1999), Transmission electron microscopy studies on carbon materials prepared by mechanical milling, Carbon, 37(12), 1941-1959.
Sato, K., R. Saito, Y. Oyama, J. Jiang, L. G. Cancado, M. A. Pimenta, A. Jorio, G. G. Samsonidze, G. Dresselhaus, and M. S. Dresselhaus, (2006), D-band Raman intensity of graphitic materials as a function of laser energy and crystallite size, Chemical Physics Letters, 427(1-3), 117-121.
Si, J. L., H. B. Li, L. W. Kuo, J. L. Pei, S. R. Song, and H. Wang, (2014), Clay mineral anomalies in the Yingxiu-Beichuan fault zone from the WFSD-1 drilling core and its implication for the faulting mechanism during the 2008 Wenchuan earthquake (Mw 7.9), Tectonophysics, 619, 171-178.
Sibson, R. H., (1975), Generation of pseudotachylyte by ancient seismic faulting, Geophysical Journal of the Royal Astronomical Society, 43(3), 775-794.
Sibson, R. H., (2003), Thickness of the seismic slip zone, B Seismological Society of America, 93(3), 1169-1178.
Song, S. R., L. W. Kuo, E. C. Yeh, C. Y. Wang, J. H. Hung, and K. F. Ma (2007), Characteristics of the lithology, fault-related rocks and fault zone structures in TCDP Hole-A, Terrestrial Atmospheric and Oceanic Sciences, 18(2), 243-269.
Tang, L. J., L. Q. Luo, C. L. Lao, G. Wang, J. Wang, and Y. Huang (2014), Real time fluid analysis during drilling of the Wenchuan Earthquake Fault Scientific Drilling Project and its responding features, Tectonophysics, 619, 70-78.
Vidano, R., and D. B. Fischbach (1978), New lines in Raman-Spectra of carbons and graphite, Journal of the American Ceramic Society, 61(1-2), 13-17.
Wang, E.Q., Meng, Q.R., Chen, Z.L., Chen, L.Z., (2001), Early Mesozoic left-lateral move-ment along the Longmen Shan fault belt and its tectonic implications. Earth Science Frontiers 8(2), 375–384 (in Chinese with English abstract).
Wang, E.Q., Meng, Q.R., (2008), Mesozoic and Cenozoic tectonic evolution of the Longmenshan fault belt. Science in China Series D: Earth Sciences 52(5), 579–592.
Wang, E., E. Kirby, K. P. Furlong, M. van Soest, G. Xu, X. Shi, P. J. J. Kamp, and K. V. Hodges, (2012), Two-phase growth of high topography in eastern Tibet during the Cenozoic, Nature Geoscience, 5(9), 640-645.
Wang, H., Li, H. B., Pei J.L., Li, T. F., Huang, Y., Zhao, Z. D., (2010), Structural and lithologic characteristics of the Wenchuan earthquake fault zone and its relationship with the seismic activity. Quaternary Sciences, 30(4):768-778 (in Chinese with English abstract).
Wang, H., H. B. Li, J. L. Si, and Y. Huang (2013), The relationship between the internal structure of the Wenchuan earthquake fault zone and the uplift of the Longmenshan., Acta Petrologica Sinica, 29(6), 2048-2060 (in Chinese with English abstract).
Wang, P., Fu, B. H., Zhang, B. et al., (2009), Relationships between surface ruptures and lithologic characteristics of the Wenchuan Ms8.0 earthquake. Chinese Journal of Geophysics, 52(1): 131-139 (in Chinese with English abstract).
Wilks, K. R., M. Mastalerz, R. M. Bustin, and J. V. Ross (1993), The role of shear strain in the graphitization of a high-volatile bituminous and anthracitic coal, International Journal of Coal Geology, 22(3-4), 247-277.
Xu, X. W., X. Z. Wen, G. H. Yu, G. H. Chen, Y. Klinger, J. Hubbard, and J. Shaw (2009), Coseismic reverse- and oblique-slip surface faulting generated by the 2008 Mw 7.9 Wenchuan earthquake, China, Geology, 37(6), 515-518.
Xu, Z. Q., S. C. Ji, H. B. Li, L. W. Hou, X. F. Fu, and Z. H. Cai (2008), Uplift of the Longmen Shan range and the Wenchuan earthquake, Episodes, 31(3), 291-301.
Zhang, P. Z., X. W. Xu, X. Z. Wen, and Y. K. Ran (2008), Slip rates and recurrence intervals of the Longmen Shan active fault zone, and tectonic implications for the mechanism of the May 12 Wenchuan earthquake, 2008, Sichuan, China, Chinese Journal of Geophysics-Chinese, 51(4), 1066-1073 (in Chinese with English abstract).
Zulauf, G., S. Palm, R. Petschick, and O. Spies (1999), Element mobility and volumetric strain in brittle and brittle-viscous shear zones of the superdeep well KTB (Germany), Chemical Geology, 156(1-4), 135-149.