簡易檢索 / 詳目顯示

研究生: 蔡孟宏
Tsai, Meng-Hung
論文名稱: 次單層銀夾層對鎳在鍺(111)-c(2×8)表面上隨溫度變化的影響
Effect of submonolayer silver buffer for thermal evolution of NiGe(111)-c(2×8) surfaces
指導教授: 傅祖怡
Fu, Tsu-Yi
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 96
中文關鍵詞: 掃描穿隧顯微鏡
英文關鍵詞: STM
論文種類: 學術論文
相關次數: 點閱:164下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當表面形成三種複雜重構介面時,鍍上少量的鎳原子,以掃描穿隧顯微鏡觀察原子團在不同溫度下的成長變化。隨著溫度上升,表面上隨意分佈的鎳原子團逐漸聚集形成大島。這些大島具有特殊結構:7×7島、六角形和長條狀,其中只有7×7島是具有週期性結構的島。經過統計,分析鎳原子團喜愛站在銀/鍺(111)-(√3×√3)的基底上。

    在實驗過程中,在低溫時銀不會讓鎳與基底鍺發生反應,充分發揮阻擋的效果, 但提高樣品溫度後出現與鎳鍺系統相同原子島,顯示銀無法完全阻止鎳與鍺形成合金。另外,能夠使在純基底上的鎳原子無法與鍺發生反應,顯示銀具有一種長距離作用力。

    比較鈷銀鍺系統和鎳。這兩種皆會發生面積小的島消失,大面積的島逐漸增加,此現象稱Ostwald ripening。在鈷銀鍺的系統裡,比較介面對於鈷的束縛,(4 ×4)介面比(√3×√3)介面強,而且成核的鈷島會推開(4×4)基底上的銀原子,在其他區域形成更大片的(√3×√3)重構;在鎳銀鍺系統裡,原子團的體積會隨著溫度上升而增大,顯示鎳在各種基底上皆會與鍺形成合金,且鎳島會喜愛站在(√3×√3)重構。

    Abstract
    We deposited 0.4 ML Ag atoms on clean Ge(111)-c(2x8) surfaces, annealed at 750K, and then prepared Ag/Ge(111) multiple interfaces. We could observe four kinds of reconstruction on Ag/Ge(111) multiple interfaces : Ge(111)-c(2x8), Ag/Ge(111)-(√3×√3), Ag/Ge(111)-(4×4) and Ag/Ge(111)- (3x1). In this thesis, we regarded Ag/Ge(111)-(3x1) surfaces as parts of Ag/Ge(111)-(4×4) surfaces.
    We deposited 0.2 ML Ni atoms on multiple interfaces, annealed the sample at different temperature, and observed the growth of Ni clusters on multi interface surfaces. In this system, there were three kinds of island : 7x7 periodic islands, hexagonal islands and long shaped islands. Specially, the 7x7 periodic islands were
    regular.
    We classified and compared the type of Ni-containing islands, discovered that there were same type of islands that appeared on Ni/Ag/Ge(111)-(√3×√3) and Ni/Ag/Ge(111) multiple interfaces, but it did not find on Ni/Ge(111)-c(2x8) multiple interfaces, even there were Ni/Ge(111)-c(2x8) surfaces in our system. Therefore, Ag
    atoms in multi-interface system produced some of influence.
    Observed the systems of Co/Ag/Ge(111) and Ni/Ag/Ge(111). We found that they had the same phenomenon in annealing process - Ostwald ripening. The difference between them was the periodic island. In addition, We knew that Co-containing islands trended to grow on Ag/Ge(111)-(4×4) surfaces. But in our experiment, Ni-containing islands trended to grow on Ag/Ge(111)-(√3×√3) surfaces by measuring
    the clusters of area, height and numbers.

    第一章 緒論 1 第二章 儀器設備與工作原理 4 2.1樣品的清潔與製備 4 2.1.1 超高真空系統 (ultra-high vacuum,UHV) 4 2.1.2 抽超高真空系統的理由 7 2.1.3 抽氣設備 9 2.1.4 進行破真空過程 11 2.1.5 達到超高真空系統的順序 15 2.1.6 樣品的清潔過程 17 2.1.7 樣品的升降溫系統 18 2.1.8 樣品的蒸鍍裝置 20 2.2 低能量電子繞射儀(Low Energy Electron diffraction) 22 2.2.1 倒晶格與電子繞射 22 2.2.2 LEED 的工作方式 27 2.2.3 LEED 圖形所傳達的表面訊息 29 2.3 實驗裝置圖 32 2.4 STM 基本原理 34 2.4.1 穿隧效應 34 2.4.2 局域電子態密度 (Local Density of State,LDOS) 38 2.4.3 STM 操作原理 39 2.4.3.1 定電流模式(Constant-current mode) 40 2.4.3.2 定高度模式(Constant-height mode) 41 2.5 掃描式穿隧電子顯微鏡 42 2.5.1 掃描頭(Scanner) 43 2.5.2 步進器(stepper) 43 2.5.3 避震裝置(Vibration Isolation) 44 2.5.4 電子控制系統(Electronics and Controller) 44 第三章 實驗步驟 45 3.1 實驗流程圖 45 3.2 前置作業 46 3.2.1 探針的製備 46 3.2.2 樣品製備 47 3.3 基底選擇及處理 49 3.3.1 鍺(111)-c(2×8)重構 49 3.3.2 銀/鍺(111)-(√3×√3)重構 50 3.3.3 銀/鍺(111)-(4×4) 52 第四章 實驗數據與討論 54 4.1 鍍次單層(submonolayer)銀在鍺(111)-c(2×8)表面形成 54 4.2 在銀鍺多重介面上成長鎳原子島 56 4.2.1 在室溫下蒸鍍鎳於銀鍺表面 56 4.2.2 加熱至 370K 58 4.2.3 加熱至 470K 60 4.2.4 加熱至 520K 62 4.2.5 加熱至 570K 63 4.2.6 加熱至 600K 64 4.2.7 加熱至 630K 66 4.2.8 加熱至 670K 68 4.2.9 加熱至 870K 69 4.3 鎳在三種介面上的分析與討論 70 4.3.1 使用軟體和分析方法 70 4.3.2 改變溫度,各基底的面積比例分析 71 4.3.3 鎳在各溫度下的面積比例分析 72 4.3.4 鎳在各溫度下的高度分析 75 4.3.5 鎳在各溫度下的個數分析 76 4.3.6 銀的角色和鎳島成分的討論 80 4.4 比較鎳島在單一界面和複雜介面的討論 84 4.5 比較鈷島和鎳島在銀/鍺(111)的成長過程 88 第五章實驗結論 92 參考資料 94

    [1] J. K. Furdyna and J. Kossut, “Diluted Magnetic Semiconductors”, Semiconductors and Semimetals, 25,74(1986)

    [2] J.A. Kubby, J.J. Boland, “Scanning tunneling microscopy of semiconductor surfaces”, Surf. Sci. Rep. 26, 61 (1996)

    [3] Y.Q. Liu, D.J. Ma, Y. Du, ” Thermodynamic modeling of the germanium–nickelsystem”, Journal of Alloys and Compounds, 491, 63(2010)

    [4] 林俊良,”二維鈷原子倒在銀/鍺(111)(√3×√3)表面聚集與成長之研究”,
    國立臺灣師範大學碩士論文 (2005)

    [5] 趙智豪,”鈷島在銀/鍺(111)上的成長行為與電子結構”,國立臺灣師範大學碩士論文 (2010)

    [6] 徐仲俞,”鈷在銀/鍺(111)-c(2×8)及鈷在銀/鍺(111)-(√3×√3)及(4×4)表面的結構衍化”,國立臺灣師範大學碩士論文 (2011)

    [7] 黃筱嵐,”原子島在金屬/半導體界面的成長研究(以鈷/銀/鍺(111)為例)”,國立臺灣師範大學博士論文 (2012)

    [8] 李振豪,”鎳在鍺(111)-c(2×8)及銀/鍺(111)-(√3×√3)表面上的成長”,國立臺灣師範大學碩士論文 (2012)

    [9] M. Singleton and P. Nash, Bulletin of Alloy Phase Diagrams, 8(2), 121 (1987)

    [10] R. W. Olesinski and G. J. Abbaschain, Bulletin of Alloy Phase Diagrams, 9(1), 71 (1988)

    [11] G. Ertl, J.Kuppers, “Basic Concepts”, Low Energy Electrons and Surface Chemistry, 2nd Ed, VCH, p.7 (1985)

    [12] 陳信良,”銀鈷雙層薄膜在鉑(111)表面的成長及合金形成”,師大物理系
    碩士論文(1997)

    [13] Charles Kittel, ”Reciprocal Lattice”, Introduction to Solid State Physics, 8th Ed, Wiley, p.29 (2004)

    [14] 蔡蕙雅,”鐵薄膜與鉑基底間溫度相依的介面擴散行為”,國立臺灣師範大學
    碩士論文 (2008)

    [15] Frankenbur, “Discovery of surface phases by low energy electron diffraction(LEED)”, advances in catalysis, 21,103 (1970)

    [16] J. B. Pendry, “Reliability factors for LEED calculations”, J. Phys. C: Solid State Phys. 13, 937 (1980)

    [17] G. Ertl, J.Kuppers, “Low Energy Electron Diffraction”, Low Energy Electrons and Surface Chemistry, 2nd Ed, VCH, p.225-226 (1985)

    [18] R. Eisberg and R. Resnik, “Quantum Physics of Atoms, Molecules, Solids, Nuclei and particles”, 2nd Ed, Wiley, p.425(1985)

    [19] R.M. Feenstra, “A prospective: Quantitative scanning tunneling spectroscopy of semiconductor surfaces”, 603, 2841 (2009)

    [20] Y. F. Hsieh, L. J. Chen, E. D. Marshall, and S. S. Lau, “Partial epitaxial growth of cobalt germanides on (111)Ge”, Appl. Phys. Lett. 51, 1588 (1987)

    [21] J. Bardeen, “Tunnelling from a Many-Particle Point of View”, Phys. Rev Lett. 6, 57 (1961)

    [22] “The Measurement Menu”, Instruments for Surface Science, version 3.1, Omicron p.63 (2000)

    [23] 徐統,”掃描穿隧顯微鏡”,儀器總覽,精密儀器發展中心出版,p.26(1998)

    [24] R. S. Becker, J. A. Golovchenko, and B. S. Swartzentruber, “Tunneling Images of Germanium Surface Reconstructions and Phase Boundaries”, Phys. Rev. Lett. 54, 2678 (1985)

    [25] R. S. Becker, B. S. Swartzentruber, J. S. Vickers, and T. Klitsner, “Dimer–adatom–stacking-fault (DAS) and non-DAS (111) semiconductor surfaces: A comparison of Ge(111)-c(2×8) to Si(111)-(2×2), -(5×5), -(7×7), and -(9×9) with scanningtunneling microscopy”, Phys. Rev. B 39, 1633 (1989)

    [26] E. S. Hirschorn, D. S. Lin, F. M. Leibsle, A. Samsavar, and T.-C. Chiang, “Charge transfer and asymmetry on Ge(111)-c(2×8) studied by scanning tunnelingmicroscopy”, Phys. Rev. B 44, 1403 (1991)

    [27] J. Aarts, A. J. Hoeven, and P. K. Larsen, “Electronic structure of the Ge(111)-c(2×8) surface”, Phys. Rev. B 37, 8190 (1988)

    [28] R. M. Feenstra, J. Y. Lee, M. H. Kang, G. Meyer and K. H. Rieder, “Band gap of the Ge(111)c(2×8) surface by scanning tunneling spectroscopy”, Phys. Rev. B 73, 035310 (2006)

    [29] D. Grozea, E. Bengu and L.D. Marks, “Surface phase diagrams for the Ag–Ge(111) and Au–Si(111) systems”, Surf. Sci. 461, 23 (2000)

    [30] Charles Kittel,”Crystal Structure”, Introduction to Solid State Physics, 8th Ed, Wiley, p.20 (2004)

    [31] H. Huang, H. Over, S. Y. Tong, J. Quinn and F. Jona, “Atomic geometry of Ge(111)(√3×√3) R30°-Ag determined by low-energy electron diffraction”, Phys. Rev. B 49, 13483 (1994)

    [32] L.-W. Chou, H. C. Wu, Y.-R. Lee, J.-C. Jiang, C. Su, and J.-C. Lin, “Atomicstructure of the Ag/Ge(111)-(√3×√3) surface: From scanning tunneling microscopy observation to theoretical study, J. Chem. Phys.131, 224705(2009)

    [33] K. J. Wan, X. F. Lin, and J. Nogami, “Surface reconstructions in the Ag/Si(111) system”, Phys. Rev. B 47, 13700 (1993)

    [34] M. Hammar, M. Göthelid, U. O. Karlsson, and S. A. Flodström, “Initial growth of silver on Ge(111) studied by scanning tunneling microscopy”, Phys. Rev. B 47, 15669(1993)

    [35] Cory H. Mullet and Shirley Chiang, “High temperature growth of Ag phases on Ge(111)”, J. Vac. Sci. Technol. A, 31, 020602 (2013)

    [36] D. Grozea, E. Bengu, C. Collazo-Davila and L. D. Marks, “Structure Determination of the Ge(111)-(3×1)Ag Surface Reconstruction”, Surf. Rev. Lett. 06, 1061 (1999)

    [37] P. Ehrhart, “Properties and interactions of atomic defects in metals and alloys”, volume 25 of Landolt-Börnstein, New Series III, chapter 2, p. 88, (1991)

    [38] Kai Nordlund and Robert Averback, “Point Defects In Metals”, Handbook of Materials Modeling, p.1855 (2005)

    [39] Xiao-Lan Huang, Agnieszka Tomaszewska, Chun-Liang Lin, Sung-Lin Tsay, Chi-Hao Chou, Tsu-Yi Fu, “Manifestations of strain–relaxation in the structure of nano-sized Co-2×2 islands grown on Ag/Ge(111)-√3×√3 surface”, Thin Solid Films, 520, 5304 (2012)

    [40] D.J. Spence, S.P. Tear, “STM studies of the Ge(111)4×4-Ag reconstruction”, Appl. Phys. A 67, 585 (1998)

    [41] Shan Jin, Christian Leinenbach, Jiang Wang, Liliana I. Duarte, Simona Delsante, Gabriella Borzone, Andrew Scott, Andrew Watson, “Thermodynamic study and re-assessment of the Ge-Ni system”, CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 38, 23 (2012)

    [42] Kapil Dhaka, Ravi Trivedi, Debashis Bandyopadhyay, “Electronic structure and stabilities of Ni-doped germanium nanoclusters: a density functional modeling study”, J. Mol. Model ,19, 1473 (2013)

    下載圖示
    QR CODE