研究生: |
陳家弘 Chen, Jia-Hong |
---|---|
論文名稱: |
鐵電電容式記憶體增強開關比之技術 Technology of on/off Ratio Enhancement for Ferroelectric Capacitive Memory |
指導教授: |
李敏鴻
Lee, Min-Hung 廖書賢 Liao, Shu-Hsien |
口試委員: |
李敏鴻
Lee, Min-Hung 廖書賢 Liao, Shu-Hsien 蘇彬 Su Pin |
口試日期: | 2024/07/19 |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 47 |
中文關鍵詞: | SOI 、雙層HZO 、鐵電電容式記憶體 |
英文關鍵詞: | SOI, double-HZO, ferroelectric capacitive memory |
研究方法: | 實驗設計法 、 主題分析 |
DOI URL: | http://doi.org/10.6345/NTNU202401733 |
論文種類: | 學術論文 |
相關次數: | 點閱:89 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鐵電記憶體(Ferroelectric Memory)是一種基於鐵電材料特性的非揮發性記憶體技術。鐵電材料具有自發極化的特性,即在沒有外加電場的情況下,材料內部會形成電偶極,並且這種極化可以被外加電場反轉,當施加一個電場時,鐵電材料內部的電偶極會隨電場方向翻轉,形成兩種穩定狀態,分別代表二進制的「1」和「0」,這種特性使得鐵電材料成為儲存訊號的理想材料。而鐵電電容式記憶體(Ferroelectric Capacitive Memory,FCM)包含在其中。
此次研究首次展示具有SOI(Silicon-On-Insulator)基板和雙層HfZrO2(Double HZO,DHZO)的鐵電電容式記憶體其電容的開關比(Capacitive on/off Ratio,CHCS/CLCS)超過500倍。這一比率是FCM中的關鍵參數,表示記憶體可靠的儲存和檢索數據的能力。由於SOI在垂直方向上的空間限制,使得調控的空乏區域能夠在橫向方向上擴張以減少CLCS;此外,由於DHZO中高正交相(orthorhombic phase,o-phase)的比例,進一步增強CHCS,實現基於低電壓的飽和電容。對於DHZO-SOI FCM,實驗展示卓越的非破壞性讀取操作(Nondestructive Read Operation,NDRO),元件和讀取方案的操作週期均大於109次,並且在多階操作的4種狀態相比單層HfZrO2(Single HZO,SHZO)-SOI顯示錯誤率(Error Rates,ER)的改善。此技術包括DHZO和SOI的FCM是一個有前途的概念,具有潛在的非揮發性記憶體(Non-Volatile Memory,NVM)應用。
Ferroelectric memory is a type of non-volatile memory technology based on the properties of ferroelectric materials. Ferroelectric materials possess spontaneous polarization, meaning that in the absence of an external electric field, electric dipoles form within the material. This polarization can be reversed by an external electric field. When an electric field is applied, the electric dipoles inside the ferroelectric material align with the direction of the field, creating two stable states representing the binary "1" and "0". This characteristic makes ferroelectric materials ideal for storing information. Ferroelectric capacitive memory is included within this category.
For the first time, we have demonstrated a CHCS/CLCS ratio greater than 500× for a ferroelectric capacitive memory with an SOI substrate and double-HfZrO2 (DHZO). This ratio is a crucial parameter in FCM as it indicates the ability of the memory to store and retrieve data reliably. The modulated depletion region could be expanded laterally due to the spatial limitations in the vertical direction by the SOI to reduce CLCS; moreover, a low-voltage-based saturation capacitance by a high orthorhombic phase (o-phase) fraction of DHZO further enhanced CHCS. For DHZO-SOI FCM, the outstanding nondestructive read operation (NDRO) was experimentally exhibited with >10⁹ cycles by both devices and readout scheme, and the multilevel operation with 4-state also showed error-rate improvement compared to that of SHZO-SOI. The proposed technique involving DHZO and SOI for FCM is a promising concept and has potential NVM applications.
[1] S. Slesazeck, U. Schroeder, T. Mikolajick, “Embedding hafnium oxide based FeFETs in the memory landscape,’’ 2018 International Conference on IC Design & Technology (ICICDT), Otranto, Italy, 2018, pp. 121-124.
[2] Z. Zhou, J. Zhou, X. Wang, H. Wang, C. Sun, K. Han, Y. Kang, Z. Zheng, H. Ni, and X. Gong, “A Metal-Insulator-Semiconductor Non-Volatile Programmable Capacitor Based on a HfAlOx Ferroelectric Film,” IEEE Electron Device Letters, vol.41, no.12, pp1837-1840, 2020.
[3] Z. Zhou, L. Jiao, Q. Kong, Z. Zheng, K. Han, Y. Chen, C. Sun, B.-Y. Nguyen, and X. Gong, “Non-Destructive-Read 1T1C Ferroelectric Capacitive Memory Cell with BEOL 3D Monolithically Integrated IGZO Access Transistor for 4F2 High-Density Integration,’’ 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Kyoto, Japan, 2023, pp. 1-2.
[4] Z. Zhou, J. Leming, J. Zhou, Z. Zheng, Y. Chen, K. Han, Y. Kang, and X. Gong, “Experimental Demonstration of An Inversion-Type Ferroelectric Capacitive Memory and its 1 kbit Crossbar Array Featuring High CHCS/CLCS, Fast Speed, and Long Retention” Symposium on VLSI Technology, T9-2, pp. 357-358, 2022.
[5] S. Mukherjee, J. Bizindavyi, S. Clima, M. I. Popovici, X. Piao, K. Katcko, F. Catthoor, S. Yu, V. V. Afanas’ev, and J. V. Houdt, "Capacitive Memory Window With Non-Destructive Read in Ferroelectric Capacitors," in IEEE Electron Device Letters, vol. 44, no. 7, pp. 1092-1095, July 2023.
[6] S. Mukherjee, J. Bizindavyi, Y.-C. Luo, S. Clima, J. Read3, M. I. Popovici, Y. Xiang, N. Bazzazian, A. Belmonte, R. Delhougne, G. S. Kar, F. Catthoor1, V. V. Afanas’ev, S. Yu and J. V. Houdt, "Pulse-Based Capacitive Memory Window with High Non-Destructive Read Endurance in Fully BEOL Compatible Ferroelectric Capacitors," 2023 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2023, pp. 1-4.
[7] T.-H. Kim, O. Phadke, Y.-C. Luo, H. Mulaosmanovic, J. Mueller, S. Duenkel, S. Beyer, A. I. Khan, S. Datta, and S. Yu, "Tunable Non-Volatile Gate-to-Source/Drain Capacitance of FeFET for Capacitive Synapse," in IEEE Electron Device Letters, vol. 44, no. 10, pp. 1628-1631, Oct. 2023.
[8] Y.-C. Luo, J. Hur, T.-H. Wang, A. Lu, S. Li, A.I. Khan and S. Yu, “Experimental Demonstration of Non-volatile Capacitive Crossbar Array for In-memory Computing” IEEE International Electron Devices Meeting (IEDM). vol. 21, no. 4, pp. 1-4, 2021.
[9] Y.-C. Luo, J. Hur, P. Wang, A. I. Khan, S. Yu; Non-volatile, small-signal capacitance in ferroelectric capacitors. Appl. Phys. Lett. 17 August 2020; 117 (7): 073501.
[10] K. Ni, P. Sharma, J. Zhang, M. Jerry, J. A. Smith, K. Tapily, R. Clark, S. Mahapatra, and S. Datta, “Critical role of interlayer in Hf0.5Zr0.5O2 ferroelectric FET nonvolatile memory performance,” IEEE Trans. Electron Devices, vol. 65, no. 6, pp. 2461–2469, 2018.
[11] J. Zhou, Z. Zhou, X. Wang, H. Wang, C. Sun, K. Han, Y. Kang, and X. Gong, “Demonstration of ferroelectricity in Al-doped HfO2 with a low thermal budget of 500◦C,” IEEE Electron Device Lett., vol. 41, no. 7, pp. 1130–1133, 2020.
[12] S. Yu, "Neuro-inspired computing with emerging nonvolatile memorys," in Proceedings of the IEEE, vol. 106, no. 2, pp. 260-285, Feb. 2018.
[13] X. Lyu, M. Si, P. R. Shrestha, K. P. Cheung and P. D. Ye, "First Direct Measurement of Sub-Nanosecond Polarization Switching in Ferroelectric Hafnium Zirconium Oxide," 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2019, pp. 15.2.1-15.2.4.
[14] A. J. Tan, Y.-H. Liao, L.-C. Wang, N. Shanker, J.-H. Bae, C. Hu, and S. Salahuddin, "Ferroelectric HfO2 Memory Transistors With High-κ Interfacial Layer and Write Endurance Exceeding 1010 Cycles," in IEEE Electron Device Letters, vol. 42, no. 7, pp. 994-997, July 2021.
[15] C.-Y. Liao, Z.-F. Lou, C.-Y. Lin, A. Senapati, R. Karmakar, K.-Y. Hsiang, Z.-X. Li, W.-C. Ray, J.-Y. Lee, P.-H. Chen, F.-S. Chang, H.-H. Tseng, C.-C. Wang, J.-H. Tsai, Y.-T. Tang, S. T. Chang, C. W. Liu, S. Maikap, and M. H. Lee, "Superlattice HfO2-ZrO2 based Ferro-Stack HfZrO2 FeFETs: Homogeneous-Domain Merits Ultra-Low Error, Low Programming Voltage 4 V and Robust Endurance 109 cycles for Multibit NVM," 2022 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2022, pp. 36.6.1-36.6.4.
[16] C.-Y. Liao, K.-Y. Hsiang, F.-C. Hsieh, S.-H. Chiang, S.-H. Chang, J.-H. Liu, C.-F. Lou, C.-Y. Lin, T.-C. Chen, C.-S. Chang, and M. H. Lee, "Multibit Ferroelectric FET Based on Nonidentical Double HfZrO2 for High-Density Nonvolatile Memory," in IEEE Electron Device Letters, vol. 42, no. 4, pp. 617-620, April 2021.
[17] M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, and C. S. Hwang, “The effects of crystallographic orientation and strain of thin Hf0.5Zr0.5O2 film on its ferroelectricity,” Appl. Phys. Lett., vol. 104, no. 7, Feb. 2014, Art. no. 072901.
[18] H. J. Kim, M. H. Park, Y. J. Kim, Y. H. Lee, W. Jeon, T. Gwon, T. Moon, K. D. Kim, and C. S. Hwang, “Grain size engineering for ferroelectric Hf0.5Zr0.5O2 films by an insertion of Al2O3 interlayer,” Appl. Phys. Lett., vol. 105, no. 19, Nov. 2014, Art. no. 192903.
[19] S. L. Miller and P. J. McWhorter, “Physics of the ferroelectric nonvolatile memory field effect transistor,” J. Appl. Phys., vol. 72, no. 12, pp. 5999–6010, Dec. 1992.
[20] M. Saitoh, R. Ichihara, M. Yamaguchi, K. Suzuki, K. Takanl, K. Akari, K. Takahashi, Y. Kamiya, K. Matsuo, Y. Kamimuta, K. Sakuma, K. Ota, and S. Fujii, “HfO2-based FeFET and FTJ for ferroelectric-memory centric 3D LSI towards low-power and high-density storage and AI application,” in IEDM Tech. Dig., Dec. 2020, pp. 375–378.
[21] T. E. Rudenko, A. N. Nazarov, V. S. Lysenko, “The advancement of silicon-on-insulator (SOI) devices and their basic properties,” Semiconductor physics, quantum electronics and optoelectronics, vol. 23, no.3, pp. 227-252, 2020.
[22] T. Y. Lee, K. Lee, H. H. Lim, M. S. Song, S. M. Yang, H. K. Yoo, D. I. Suh, Z. Zhu, A. Yoon, M. R. MacDonald, X. Lei, H. Y. Jeong, D. Lee, K. Park, J. Park, and S. C. Chae, “Ferroelectric Polarization-Switching Dynamics and Wake-Up Effect in Si-Doped HfO2,” ACS Applied Materials & Interfaces, 11, (3), 3142-3149, 2019.