簡易檢索 / 詳目顯示

研究生: 黃宇濤
Huang, Yu-Tao
論文名稱: 二硒化錸表面鍍鐵原子致形貌及電性變化
Morphology and Electrical Properties Changes of ReSe2 Surface by Fe Atoms Deposition
指導教授: 傅祖怡
Fu, Tsu-Yi
口試委員: 陳瑞山
Chen, Ruei-San
黃英碩
Hwnag, Ing-Shouh
傅祖怡
Fu, Tsu-Yi
口試日期: 2023/06/29
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 55
中文關鍵詞: 掃描式穿隧電子顯微鏡二硒化錸鐵原子蒸鍍憶阻器效應
英文關鍵詞: STM, ReSe2, Fe atoms deposition, Memristor effect
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202300735
論文種類: 學術論文
相關次數: 點閱:125下載:45
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二硒化錸(ReSe2)為過渡金屬二硫族化物(TMDs)的一員,過往的研究顯示TMDs材料不可避免地會有原子級的缺陷產生,於是近期大家更關注於缺陷工程(Defect Engineering)上,試圖刻意控制缺陷的產生,來達到符合我們所需的材料特性。本實驗室透過超高真空系統的建立,確保欲研究的材料表面不受其他雜質吸附,並使用掃描式穿隧顯微鏡(Scanning tunneling microscope, STM)及掃描穿隧能譜 (Scanning tunneling spectroscopy, STS)進行原子級的表面與缺陷量測。
    我們利用機械剝離法並搭配使用電子束蒸鍍槍,觀察二硒化錸原始表面特徵、晶格結構、機械剝離後表面缺陷及鐵原子在其表面的缺陷樣式,並量測表面態電子特性,來分析表面缺陷型態和區域大小,對材料的物理特性所造成的影響。
    其中更發現在表面鍍鐵原子會使電性有類似於非揮發性電阻開關(Non-volatile resistive switching),又稱作憶阻器效應(memristor effect)的現象,顯示了鐵原子在二硒化錸表面有可能因電壓的變換而影響整體排列結構的可能。

    Rhenium diselenide (ReSe2) is a member of transition metal dichalcogenides (TMDs). Previous studies have shown that TMDs materials inevitably have atomic-level defects, so people have paid more attention to defect engineering recently, trying to deliberately control the generation of defects to achieve the material properties we need. Through the establishment of an ultra-high vacuum(UHV) system, we ensure that the surface of the material is not adsorbed by other impurities, and use STM and STS to measure the surface and defects at the atomic level.
    We use the mechanical exfoliation(Fresh) and electron beam evaporation gun to observe the original surface(Non-Fresh), lattice structure, surface defects after Fresh and the defect pattern of iron atoms on the surface of ReSe2, and measure the electronic properties of the surface state in order to analyze the impact of the surface defect type and area size on the physical properties of the material.
    Among them, it is found that plating iron atoms on the surface will cause electrical properties similar to non-volatile resistive switching (Non-volatile resistive switching), which shows that iron atoms on the surface of ReSe2 may affect the overall structures.

    致謝 Ⅰ 摘要 Ⅱ Abstract Ⅲ 圖表目錄 Ⅳ 目錄 Ⅵ 第一章 緒論 1 1-1 二硒化錸 (Rhenium disulfide, ReSe2) 基本性質 1 1-2 缺陷工程 (Defect engineering) 3 1-3 非揮發性電阻開關(Non-volatile resistive switching) 4 第二章 實驗原理及方法 6 2-1 量子穿隧效應 (Quantum tunneling effect ) 6 2-2 侷域態密度 (Local of density of state, LDOS) 7 2-3 掃描穿隧能譜 (Scanning tunneling spectroscopy, STS) 7 2-4 探針引致能帶彎曲 (Tip induced band bending, TIBB) 8 2-5 掃描穿隧電子顯微鏡-掃描工作模式 9 2.5.1 壓電效應 (Piezoelectric effect) 9 2.5.2 定高度模式 10 2.5.3 定電流模式 10 2.5.4 電流影像穿隧能譜 (Current image tunneling spectroscopy, CITS) 11 第三章 實驗儀器與方法 12 3-1 掃描穿隧電子顯微鏡 (Scanning tunneling microscope, STM) 12 3.1.1 掃描頭和探針 (Scanner and tip) 13 3.1.2 步進器 (Stepper) 14 3.1.3 掃描平台併避震系統 (Sample stage and vibration isolation) 15 3-2 超高真空系統 17 3.2.1 油封式機械幫浦 18 3.2.2 渦輪分子幫浦 18 3.2.3 離子幫浦 19 3.2.4 鈦昇華幫浦 20 3.2.5 真空壓力計 21 3.2.6 殘氣分析儀 (Residual Gas Analyzers, RGA) 22 3.2.7 真空腔體封合 22 3.2.8 傳輸軸 24 3-3 電子束蒸鍍槍 (Electron Beam Evaporator, MBE) 25 3-4 二硒化錸實驗方法 26 3.4.1 二硒化錸機械剝離 (Fresh) 27 3.4.2 二硒化錸表面蒸鍍鐵原子 28 第四章 實驗結果與討論 30 4-1 二硒化錸原始表面特徵與電性分析 30 4-2 二硒化錸機械剝離後的表面特徵與電性分析 32 4.2.1 二硒化錸的小尺度晶格結構 32 4.2.2 平坦且少量雜質吸附的表面 34 4.2.3 亮暗起伏複雜的表面 35 4.2.4 機械剝離後的樣品區域差異 37 4-3 二硒化錸蒸鍍鐵原子的表面特徵與電性分析 38 4.3.1 少量鐵原子附著的表面 38 4.3.2 大範圍密度鐵聚集的表面 40 4.3.3 定點穩定接觸的電性量測 41 第五章 結論 46 附錄 47 附錄一 原始數據補充-平坦且少量雜質吸附的表面 47 附錄二 原始數據補充-亮暗起伏複雜的表面 48 參考文獻 49

    [1]Qian, X., Liu, J., Fu, L., & Li, J. (2014). Quantum Spin Hall Effect in Two-Dimensional Transition Metal Dichalcogenides. Science, 346(6215), 1344–1347. https://doi.org/10.1126/science.1256815
    [2]Wang, F., Wang, Z., Wang, Q., Wang, F., Yin, L., Xu, K., Huang, Y., & He, J. (2015). Synthesis, properties and applications of 2D non-graphene materials. Nanotechnology, 26(29). https://doi.org/10.1088/0957-4484/26/29/292001
    [3]Rivera, P., Schaibley, J. R., Jones, A. M., Ross, J. S., Wu, S., Aivazian, G., Klement, P., Seyler, K., Clark, G., Ghimire, N. J., Yan, J., Mandrus, D. G., Yao, W., & Xu, X. (2015). Observation of Long-Lived Interlayer Excitons in Monolayer MoSe2–WSe2 Heterostructures. Nature Communications, 6(2642). https://doi.org/10.1038/ncomms7242
    [4]Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306 (5696), 666–669. https://doi.org/10.1126/science.1102896
    [5]Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., & Geim, A. K. (2005). Two-Dimensional Atomic Crystals. PANS, 102(30), 10451–10453. https://doi.org/10.1073/pnas.0502848102
    [6]Ge, R., Wu, X., Kim, M., Shi, J., Sonde, S., Tao, L., Zhang, Y., Lee, J. C., & Akinwande, D. (2018). Atomristor: Nonvolatile Resistance Switching in Atomic Sheets of Transition Metal Dichalcogenides. Nano Lett, 18(1), 434–441. https://doi.org/10.1021/acs.nanolett.7b04342
    [7]Akinwande, D., Huyghebaert, C., Wang, C., Serna, M. I., Goossens, S., Li, L., Wong, H. -s. philip, & Koppens, F. H. l. (2019). Graphene and Two-Dimensional Materials for Silicon Technology. Nature, 573, 507–518. https://doi.org/10.1038/s41586-019-1573-9
    [8]Shearer, G. C., Chavan, S., Bordiga, S., Svelle, S., Olsbye, U., & Lillerud, K. P. (2016). Defect Engineering: Tuning the Porosity and Composition of the Metal–Organic Framework UiO-66 via Modulated Synthesis. Chem. Mater., 28(11), 3749–3761. https://doi.org/10.1021/acs.chemmater.6b00602
    [9]Song, G., Cong, S., & Zhao, Z. (2022). Defect Engineering in Semiconductor-Based SERS. Chem. Sci., 13, 1210–1224. https://doi.org/10.1039/D1SC05940H
    [10]Zhang, N., Gao, C., & Xiong, Y. (2019). Defect Engineering: A Versatile Tool for Tuning the Activation of Key Molecules in Photocatalytic Reactions. Journal of Energy Chemistry, 37, 43–57. https://doi.org/10.1016/j.jechem.2018.09.010
    [11]Li, X., Chen, C., Yang, Y., Lei, zhibin, & Xu, H. (2020). 2D Re-Based Transition Metal Chalcogenides: Progress, Challenges, and Opportunities. Advanced Science, 7(23). https://doi.org/10.1002/advs.202002320
    [12]Kim, B. S., Kyung, W. S., Denlinger, J. D., Kim, C., & Park, S. R. (2019). Strong One-Dimensional Characteristics of Hole-Carriers in ReS2 and ReSe2. Scientific Reports, 9(2730). https://doi.org/10.1038/s41598-019-39540-4
    [13]Arora, A., Noky, J., Drüppel, M., Jariwala, B., Deilmann, T., Schneider, R., Schmidt, R., Pozo-zamudio, O. D., Stiehm, T., Bhattacharya, A., Krüger, P., De vasconcellos, S. M., Rohlfing, M., & Bratschitsch, R. (2017). Highly Anisotropic In-Plane Excitons in Atomically Thin and Bulklike 1T’-ReSe2. Nano Lett, 17(5), 3202¬¬¬–3207. https://doi.org/10.1021/acs.nanolett.7b00765
    [14]Alcock, N. w., & Kjekshus, A. (1966). The Crystal Structure of ReSe2. Acta Chem. Scand., 19, 79–94. https://doi.org/10.3891/acta.chem.scand.19-0079
    [15]Jiang, S., Hong, M., Wei, W., Zhao, L., Zhang, N., Zhang, Z., Yang, P., Gao, N., Zhou, X., Xie, C., Shi, J., Huan, Y., Tong, L., Zhao, J., Zhang, Q., Fu, Q., & Zhang, Y. (2018). Direct Synthesis and in Situ Characterization of Monolayer Parallelogrammic Rhenium Diselenide on Gold Foil. Communications Chemistry, 1(17). https://doi.org/10.1038/s42004-018-0010-6
    [16]Chen, X., Lei, B., Zhu, Y., Zhou, J., Liu, Z., Ji, W., & Zhou, W. (2020). Pristine Edge Structures of T”-Phase Transition Metal Dichalcogenides (ReSe2, ReS2) Atomic Layers. Nanoscale, 12, 17005–17012. https://doi.org/10.1039/D0NR03530K
    [17]Chen, X., Lei, B., Zhu, Y., Zhou, J., Gao, M., Liu, Z., Ji, W., & Zhou, W. (2021). Diverse Spin-Polarized In-Gap States at Grain Boundaries of Rhenium Dichalcogenides Induced by Unsaturated Re–Re Bonding. ACS Materials Lett., 3(10), 1513–1520. https://doi.org/10.1021/acsmaterialslett.1c00418
    [18]Hafeez, M., Gan, L., Bhatti, A. S., & Zhai, T. (2017). Rhenium Dichalcogenides (ReX2, X = S or Se): An Emerging Class of TMDs Family. Mater. Chem. Front., 1, 1917–1932. https://doi.org/10.1039/C6QM00373G
    [19]Zhang, E., Wang, P., Li, Z., Wang, H., Song, C., Huang, C., Chen, Z., Yang, L., Zhang, K., Lu, S., Wang, W., Liu, S., Fang, H., Zhou, X., Yan, H., Zou, J., Wan, X., Zhou, P., Hu, W., & Xiu, F. (2016). Tunable Ambipolar Polarization-Sensitive Photodetectors Based on High-Anisotropy ReSe2 Nanosheets. ACS Nano, 10(8), 8067–8077. https://doi.org/10.1021/acsnano.6b04165
    [20]Kang, B., Kim, Y., Cho, J. ho, & Lee, C. (2017). Ambipolar Transport Based on CVD-Synthesized ReSe2. 2D Mater., 4(2). https://doi.org/10.1088/2053-1583/aa591f
    [21]Yang, S., Tongay, S., Li, Y., Yue, Q., Xia, J., Li, S., Li, J., & Wei, S. (2014). Layer-Dependent Electrical and Optoelectronic Responses of ReSe2 Nanosheet Transistors. Nanoscale, 6, 7226–7231. https://doi.org/10.1039/c4nr01741b
    [22]Tiong, K. K., Ho, C. H., & Huang, Y. S. (1999). The Electrical Transport Properties of ReS2 and ReSe2 Layered Crystals. Solid State Communications, 111(11), 635–640. https://doi.org/10.1016/S0038-1098(99)00240-9
    [23]Hart, L. S., Gunasekera, S. M., Mucha-kruczyński, M., Webb, J. L., Avila, J., Asensio, M. C., & Wolverson, D. (2021). Interplay of Crystal Thickness and In-Plane Anisotropy and Evolution of Quasi-One-Dimensional Electronic Character in ReSe2. Phys. Rev. B, 104(3). https://doi.org/10.1103/PhysRevB.104.035421
    [24]Jariwala, B., Voiry, D., Jindal, A., Chalke, B. A., Bapat, R., Thamizhavel, A., Chhowalla, M., Deshmukh, M., & Bhattacharya, A. (2016). Synthesis and Characterization of ReS2 and ReSe2 Layered Chalcogenide Single Crystals. Chem. Mater., 28(10), 3352–3359. https://doi.org/10.1021/acs.chemmater.6b00364
    [25]Corbet, C. M., Sonde, S. S., Tutuc, E., & Banerjee, S. K. (2016). Improved Contact Resistance in ReSe2 Thin Film Field-Effect Transistors. Appl. Phys. Lett., 108. https://doi.org/10.1063/1.4947468
    [26]Hart, L. S., Webb, J. L., Dale, S., Bending, S. J., Mucha-kruczynski, M., Wolverson, D., Chen, C., Avila, J., & Asensio, M. C. (2017). Electronic Bandstructure and van Der Waals Coupling of ReSe2 Revealed by High-Resolution Angle-Resolved Photoemission Spectroscopy. Scientific Reports, 7(5145). https://doi.org/10.1038/s41598-017-05361-6
    [27]Liang, Q., Zhang, Q., Zhao, X., Liu, M., & Wee, A. T. s. (2021). Defect Engineering of Two-Dimensional Transition-Metal Dichalcogenides: Applications, Challenges, and Opportunities. Nano Lett, 15(2), 2165–2181. https://doi.org/10.1021/acsnano.0c09666
    [28]Luo, Y., & Wu, Y. (2023). Defect Engineering of Nanomaterials for Catalysis. Nanomaterials, 13(6), 1116. https://doi.org/10.3390/nano13061116
    [29]Lin, Z., Carvalho, B. R., Kahn, E., Lv, R., Rao, R., Terrones, H., Pimenta, M. A., & Terrones, M. (2016). Defect Engineering of Two-Dimensional Transition Metal Dichalcogenides. 2D Materials, 3(2). https://doi.org/10.1088/2053-1583/3/2/022002
    [30]Zhou, W., Zou, X., Najmaei, S., Liu, Z., Shi, Y., Kong, J., Lou, J., Ajayan, P. M., Yakobson, B. I., & Idrobo, J. (2013). Intrinsic Structural Defects in Monolayer Molybdenum Disulfide. Nano Lett., 3(6), 2615–2622. https://doi.org/10.1021/nl4007479
    [31]Ding, X., Peng, F., Zhou, J., Gong, W., Slaven, G., Loh, K. P., Lim, C. T., & Leong, D. T. (2019). Defect Engineered Bioactive Transition Metals Dichalcogenides Quantum Dots. Nature Communications, 10(41). https://doi.org/10.1038/s41467-018-07835-1
    [32]Zhou, Y., Zhang, J., Song, E., Lin, J., Zhou, J., Suenaga, K., Zhou, W., Liu, Z., Liu, J., Lou, J., & Fan, H. jin. (2020). Enhanced Performance of In-Plane Transition Metal Dichalcogenides Monolayers by Configuring Local Atomic Structures. Nature Communications, 11(2253). https://doi.org/10.1038/s41467-020-16111-0
    [33]Liang, Q., Gou, J., Arramel, Zhang, Q., Zhang, W., & Wee, andrew Thye shen. (2020). Oxygen-Induced Controllable p-Type Doping in 2D Semiconductor Transition Metal Dichalcogenides. Nano Research, 13, 3439–3444. https://doi.org/10.1007/s12274-020-3038-8
    [34]Qi, Y., Song, L., Ouyang, S., Liang, X., Ning, S., Zhang, Q., & Ye, J. (2020). Photoinduced Defect Engineering: Enhanced Photothermal Catalytic Performance of 2D Black In2O3−x Nanosheets with Bifunctional Oxygen Vacancies. Advanced Materials, 32(6). https://doi.org/10.1002/adma.201903915
    [35]Zhang, X., Liao, Q., Liu, S., Kang, Z., Zhang, Z., Du, J., Li, F., Zhang, S., Xiao, J., Liu, B., Ou, Y., Liu, X., Gu, L., & Zhang, Y. (2018). Poly(4-Styrenesulfonate)-Induced Sulfur Vacancy Self-Healing Strategy for Monolayer MoS2 Homojunction Photodiode. Nature Communications, 8(15881). https://doi.org/10.1038/ncomms15881
    [36]Shi, Y., Li, H., & Li, L. (2015). Recent Advances in Controlled Synthesis of Two-Dimensional Transition Metal Dichalcogenides via Vapour Deposition Techniques. Chem. Soc. Rev., 44, 2744–2756. https://doi.org/10.1039/C4CS00256C
    [37]Obodo, K. O., Ouma, C. N. M., Obodo, J. T., & Braun, M. (2017). Influence of Transition Metal Doping on the Electronic and Optical Properties of ReS2 and ReSe2 Monolayers. Phys. Chem. Chem. Phys., 19, 19050–19057. https://doi.org/10.1039/C7CP03455E
    [38]Pan, F., Chen, C., Wang, Z., Yang, Y., Yang, J., & Zeng, F. (2010). Nonvolatile Resistive Switching Memories-Characteristics, Mechanisms and Challenges. Progress in Natural Science: Materials International, 20, 1–15. https://doi.org/10.1016/S1002-0071(12)60001-X
    [39]李明道. (2014). 新式非揮發性記憶體之發展與挑戰 Development and Challenges of the New Non-Volatile Memory. 國家奈米元件實驗室奈米通訊, 21(3), 9–14. https://www.airitilibrary.com/Publication/alDetailedMesh?docid=1029502x-201409-201412020006-201412020006-9-14
    [40]Mitra, S., Kabiraj, A., & Mahapatra , S. (2021). Theory of Nonvolatile Resistive Switching in Monolayer Molybdenum Disulfide with Passive Electrodes. Npj 2D Materials and Applications, 5(33). https://doi.org/10.1038/s41699-021-00209-0
    [41]Hus, S. M., Chen, P., Liang, L., Donnelly, G. E., Ko, W., Huang, F., Chiang, M., Li, A., & Akinwande, D. (2021). Observation of Single-Defect Memristor in an MoS2 Atomic Sheet. Nature Nanotechnology, 16, 58–62. https://doi.org/10.1038/s41565-020-00789-w
    [42]Shankar, R. (1994). Principles of Quantum Mechanics (2nd ed.). Plenum.
    [43]Bardeen, J. (1961). Tunnelling from a Many-Particle Point of View. Phys. Rev. Lett., 6(57). https://doi.org/10.1103/PhysRevLett.6.57
    [44]Bonnell, D. A. (1993). Scanning Tunneling Microscopy and Spectroscopy: Theory, Techniques, and Applications. VCH Publishers, Inc.
    [45]Weimer, M., Kramar, J., & Baldeschwieler, J. D. (1989). Band Bending and the Apparent Barrier Height in Scanning Tunneling Microscopy. Phys. Rev. B, 39(5572). https://doi.org/10.1103/PhysRevB.39.5572
    [46]Kaiser, W. J., Bell, L. D., Hecht, M. H., & Grunthaner, F. J. (1988). Scanning Tunneling Microscopy Characterization of the Geometric and Electronic Structure of Hydrogen‐terminated Silicon Surfaces. Journal of Vacuum Science & Technology A, 6, 519–523. https://doi.org/10.1116/1.575372
    [47]廖英凱. (2017, June 2). 掃描穿隧能譜──用穿隧效應,洞察量子天地. 中研院-研之有物. https://research.sinica.edu.tw/chuang-tien-ming-stm/
    [48]黃英碩. (2005). 掃描探針顯微術的原理及應用 Scanning Probe Microscopy: Principles and Applications. 科儀新知, 26(4), 7–17.
    [49]國科會精密儀器發展中心. (2004). 真空技術與應用. 全華圖書.
    [50]童憶穎. (2021, August 30). 真空泵浦如何運作出高真空 兩段式和氣體壓載閥的功能. 禾久貿易股份有限公司-知識園地. https://www.nogihisa.com.tw/msg/msg48.html
    [51]深圳六碳科技有限公司. (n.d.). ReSe2 二硒化錸-產品詳情. 深圳六碳科技有限公司-二維晶體材料. http://2dmaterialshop.com/pd.jsp?id=250
    [52]張文翰. (2022). 二硒化錸機械剝離前後及氧致缺陷變化. 國立臺灣師範大學碩士論文. https://doi.org/10.6345/NTNU202201049
    [53]Addou, R., Colombo, L., & Wallace, R. M. (2015). Surface Defects on Natural MoS2. ACS Appl. Mater. Interfaces, 7(22), 11921–11929. https://doi.org/10.1021/acsami.5b01778
    [54]Liu, F., Zheng, S., He, X., Chaturvedi, A., He, J., Chow, W. L., Mion, T. R., Wang, X., Zhou, J., Fu, Q., Fan, H. jin, Tay, B. K., Song, L., He, R., Kloc, C., Ajayan, P. M., & Liu, Z. (2016). Highly Sensitive Detection of Polarized Light Using Anistropic 2D ReS2. Advanced Functional Materials, 26(8). https://doi.org/10.1002/adfm.201504546
    [55]Park, J. H., Sanne, A., Guo, Y., Amani, M., Zhang, K., Movva, H. C. p., Robinson, J. A., Javey, A., Robertson, J., Banerjee, S. K., & Kummel, A. C. (2017). Defect Passivation of Transition Metal Dichalcogenides via a Charge Transfer van Der Waals Interface. SCIENCE ADVANCES, 3(10). https://doi.org/10.1126/sciadv.1701661
    [56]Liu, X., Balla, I., Bergeron, H., & Hersam, M. C. (2016). Point Defects and Grain Boundaries in Rotationally Commensurate MoS2 on Epitaxial Graphene. J. Phys. Chem. C, 120(37), 20798–20805. https://doi.org/10.1021/acs.jpcc.6b02073
    [57]Kc, S., Longo, R. C., Addou, R., Wallace, R. M., & Cho, K. (2014). Impact of Intrinsic Atomic Defects on the Electronic Structure of MoS2 Monolayers. Nanotechnology, 25(37). https://doi.org/10.1088/0957-4484/25/37/375703
    [58]Xu, K., Cao, P., & Heath, J. R. (2009). Scanning Tunneling Microscopy Characterization of the Electrical Properties of Wrinkles in Exfoliated Graphene Monolayers. Nano Lett., 9(12), 4446–4451. https://doi.org/10.1021/nl902729p
    [59]Hsu, H., Wu, C., Hsu, K., Chang, po-chun, Fu, T., Mudinepalli, V. R., & Lin, W. (2015). Surface Morphology, Magnetism and Chemical State of Fe Coverage on MoS2 Substrate. Applied Surface Science, 357(Part A), 551–557. https://doi.org/10.1016/j.apsusc.2015.09.079

    下載圖示
    QR CODE