簡易檢索 / 詳目顯示

研究生: 李庭輝
Lee, Ting-Hui
論文名稱: 含dithiafulvalene單元之二聚體式光敏染料及其在染敏太陽能電池上之應用
Dithiafulvalene-based dimer-type sensitizers for DSSCs application
指導教授: 林建村
Lin, Jiann-T'Suen
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 114
中文關鍵詞: 染料敏化太陽能電池二聚體式
英文關鍵詞: dye-sensitized solar cells, dithiafulvalene, dimer-type
論文種類: 學術論文
相關次數: 點閱:106下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在本論文研究中,我們藉由Suzuki 偶合反應、Stille偶合反應、Horner-Wittig 縮合反應、Vilsmeier-Haack醛化反應以及Knoevenagel縮合反應等化學方法,合成出以dithafulvalene(DTF)單元作為電子予體(electron donor),苯環(benzene)、噻吩(thiophene)或芴(fluorene)作為共軛架橋(spacer),以及以2-cyanoacrylic acid作為電子受體(electron acceptor)所組成的一系列單體式染料M1、M2和M4,以及二聚體式染料D2–D5。
      藉由循環伏安法(Cyclic voltammetry)、差式脈衝伏安法(Differential Pulse Voltammetry)以及可見-紫外光光譜儀(UV-Vis absorption spectra),我們可以測得化合物在溶液狀態下的HOMO及LUMO能階,以及分子的光收成的能力。我們也對這些分子進行理論計算之探討。
      以此系列化合物作為染料敏化太陽能電池(dye-sensitized solar cells (DSSCs) )的光敏劑,其光電轉換效率表現介於2.11至 5.24%間。二聚體式(dimer-type)染料能夠有效的抑制染料與染料間的堆疊現象(π-π stacking),且也能夠保護TiO2光電極,降低電解質因靠近電極表面而產生暗電流(dark curent)的機會。本研究並以電化學阻抗分析(electrochemical impedance spectroscopy)來探討元件中的電子注入與電子再結合。

      A series of metal-free sensitizers consist of dithafulvalene (DTF) unit as the electron donor, benzene, thiophene or fluorine moiety as the conjugated segments and 2-cyanoacrylic acid as the electron acceptor have been synthesized via Suzuki coupling, Stille coupling, Horner-Wittig condensation, Vilsmeier-Haackformylation and Knoevenagel condensation reactions. The sensitizers can be of monomer-type (M1、M2、M4) or dimer-type (D2–D5).
      Cyclic voltammograms, differential pulse voltammograms and UV-Vis absorption spectra were used to estimate the HOMO and LUMO energy levels and its light harvest ability of the sensitizers in solution. Theoretical computations were also carried out on these dye molecules.
      The dyes were used as the sensitizers of dye-sensitized solar cells (DSSCs). The conversion efficiencies of the DSSCs fabricated range from 2.11 to 5.24%. The dimer-type dyes can more effectively suppress the π-π stacking of the molecules and the dark current. Electrochemical impedance spectroscopy (EIS) was also used to study the electron injection and recombination behaviors.

    摘要------------------------------------------------------------------------------------------------I Abstract-------------------------------------------------------------------------------------------II 目錄----------------------------------------------------------------------------------------------III 圖目錄--------------------------------------------------------------------------------------------V 表目錄------------------------------------------------------------------------------------------VII 附圖目錄--------------------------------------------------------------------------------------VIII 第一章、緒論與研究動機----------------------------------------------------------------------1  1−1、前言--------------------------------------------------------------------------------------1  1−2、太陽光譜介紹--------------------------------------------------------------------------1  1−3、太陽能電池簡介-----------------------------------------------------------------------2    1−3−1、矽晶類太陽能電池-----------------------------------------------------------3    1−3−2、化合物型太陽能電池--------------------------------------------------------4    1−3−2、有機太陽能電池--------------------------------------------------------------4      (1) 有機光伏打電池(Organic Photovoltaic Cells,OPVs)------------5      (2) 染料敏化太陽能電池(Dye-Sensitized Solar Cells,DSSCs)-----5  1−4、染料敏化太陽能電池之各部元件組成及工作原理-----------------------------6  1−5、太陽能電池參數介紹-----------------------------------------------------------------9  1−6、研究動機-------------------------------------------------------------------------------11 第二章、實驗方法與過程說明--------------------------------------------------------------23  2–1、實驗儀器-------------------------------------------------------------------------------23  2–2、實驗藥品及溶劑----------------------------------------------------------------------24  2–3、合成步驟及代號----------------------------------------------------------------------25  2−4、太陽能電池元件製作----------------------------------------------------------------48 第三章、結果與討論--------------------------------------------------------------------------50  3–1、實驗合成方法與反應機構之探討-------------------------------------------------50    3–1–1、本研究論文之反應機構探討----------------------------------------------52  3–2、有機染料之物性探討----------------------------------------------------------------55    3–2–1、光物理性質之探討----------------------------------------------------------55    3–2–2、電化學性質之探討----------------------------------------------------------57  3–3、染敏元件效率之探討----------------------------------------------------------------60    3–3–1、TiO2薄膜上的吸收光譜----------------------------------------------------60    3–3–2、染敏元件效率表現探討----------------------------------------------------61  3–4、染敏元件EIS性質探討-------------------------------------------------------------64  3–5、理論計算之探討----------------------------------------------------------------------69  3–6、結論-------------------------------------------------------------------------------------78 參考文獻----------------------------------------------------------------------------------------79 附圖----------------------------------------------------------------------------------------------73

    1. Kallmans, H.; Pope, M. J. Chem. Phys. 1958, 30, 585.
    2. Green, M. A. et al in “Proceeding of the 21st IEEE Photovoltaic Specialists Conference.” Orlando, USA: IEEE Publication, 1990.
    3. Chapin, D. M.; Fuller, C. S.; Pearson, G. L. J. Appl. Phys. 1954, 25, 676.
    4. 馮垛生, “太陽能發電原理與應用” 五南圖書出版股份有限公司, 2009.
    5. 郭明村, “薄膜太陽能電池發展近況” 工業材料雜誌 2003, 203, 138.
    6. Hurd, F.; Livingston, R. J. Phys. Chem. 1940, 44, 865.
    7. 萬海保, 曹立新, 王麗穎, 曾廣賦, 席時權, “染料敏化的TiO2奈米晶多孔膜的性質及光電轉移” 化學通報 1999, 6.
    8. Tsubomura, H.; Matsumura, M.; Nomura, Y.; Amamiya, T. Nature 1976, 261, 402.
    9. Regan, B. O.; Grätzel, M. Nature 1991, 353, 737.
    10. (a) Nazeeruddin, M. K.; DeAngelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. J. Am. Chem. Soc. 2005, 127, 16835. (b) (b) Gao, F.; Wang, Y.;Shi, D.; Zhang, J.; Wang, M.;Jing, X.; Humphry-Baker, R.; Wang, P.; Zakeeruddin, M. S.; Grätzel, M. J. Am. Chem. Soc. 2008, 130, 10720. (c) Chen, C.-Y.; Wang, M.; Li, J-Y; Pootrakulchote, N.; Alibabaei, L.; Ngoc-le, C.; Decoppet, J.-D.; Tsai, J.-H.; Grätzel, C.; Wu, C.-G.; Zakeeruddin, S. M. and Grätzel, M. ACS Nano 2009, 3, 3103.
    11. Yella, A.; Lee, H.-W.; Tsao, H. N. ; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M.; Grätzel, M. Science 2011, 334, 629.
    12. Durrant, J. R.; Haque, S. A. Nat, Mater. 2003, 2, 362.
    13. Ferber, J.; Stangl, R.; Luther, J. Sol. Energy Mater. Sol. Cells 1998, 53, 29.
    14. Zeng, W.; Cao, Y.; Bai, Y.; Wang, Y.; Shi, Y.; Zhang, M.; Wang, F.; Pan, C.; Wang, P. Chem. Mater. 2010, 22, 1915.
    15. (a) Liang, M.; Chen, J. Chem. Soc. Rev. 2013, 42, 3453. (b) Yen, Y.-S; Chou, H.-H.; Chen,Y.-C.; Hsu, C.-Y.; Lin, J.-T. J. Mater. Chem. 2012, 22, 8734.
    16. Thomas, K. R. J.; Lin, J. T.; Hsu, Y.-C.; Ho, K.-C. Chem. Commun. 2005, 4098.
    17. (a) Velusamy, M.; Thomas, K. R. J.; Lin, J. T.; Hsu, Y.-C.; Ho, K.-C. Org. Lett. 2005, 7, 1899. (b) Chou, H.-H.; Chen, Y.-C.; Huang, H.-J.; Lee, T.-H.; Lin, J. T.; Tsai, C.; Chen, K. J. Mater. Chem. 2012, 22, 10929.
    18. (a) Bolag, A.; Nishida, J.-i.; Hara, K.; Yamashita, Y. Chem. Lett. 2011, 40, 510. (b) Franco, S.; Garin, J.; Baroja, N. M. De; Perez-Tejada, R.; Orduna, J.; Yu, Y.; Lira-Cantu, M. Org. Lett. 2012, 14, 752.
    19. Yang, H.-Y.; Yen, Y.-S.; Hsu, Y.-C.; Chou, H.-H.; Lin, J. T. Org. Lett. 2012, 12, 16.
    20. (a) Gorgues, A.; Hudhomme, P.; Salle, M. Chem. Rev. 2004, 104, 5151. (b) Segura, J. L.; Martin, N. Angew. Chem., Int. Ed. 2001, 40, 1372.
    21. Wenger, S.; Bouit, P.-A.; Chen, Q.; Teuscher, J.; Censo, D. D.; Humphry-Baker, R.; Moser, J.-E.; Delgado, J. L.; Martin, N.; Zakeeruddin, S. M. and Gratzel, M. J. Am. Chem. Soc. 2010, 132, 5164. (b) Bouit, P.-A.; Marszalek, M.; Humphry-Baker, R.; Viruela, R.; Orti, E. Zakeeruddin, S. M.; Grätzel, M.; Delgado, J. L.; Martin N. Chem. Eur. J. 2012, 18, 11621. (c) Guo, K.; Yan, K.; Lu, X.; Qiu, Y.; Liu, Z.; Sun, J.; Yan, F.; Guo, W.; Yang, S. Org. Lett. 2012, 14, 2214. (d) Wan, Z.; Jia, C.; Duan, Y.; Chen, X.; Lin, Y.; Shi, Y. Org. Electron. 2013, 14, 2132.
    22. (a) Abbotto, A.; Manfredi, N.; Marinzi, C.; Angelis, F. D.; Mosconi, E.; Yum, J.-H.; Xianxi, Z.; Nazeeruddin, M. K.; Grätzel, M. Energy Environ. Sci. 2009, 2, 1094. (b) Shang, H.; Luo, Y.; Guo, X.; Huang, X.; Zhan, X.; Jiang, K.; Meng, Q. Dyes Pigm. 2010, 87, 249 (c) Lee, J.-K.; Lee, S.-M.; Lee, S.-B.; Kim, K.-H.; Cho, S.-E.; Jang, S.-i.; Park, S.-H.; Hwang, W.-P.; Seo, M.-H.; Kim, M.-R. Cur. Appl. Phys. 2011, 11, 140.
    23. (a) Chu, H.-C.; Sahu, D.; Hsu, Y.-C.; Padhy, H.; Patra, D.; Lin, J.-T.; Bhattacharya, D.; Lu, K.-L.; Wei, K.-H.; Lin, H.-C. DyesPigm. 2012, 93, 1488. (b) Ramkumar, S.; Anandan, S. Dyes Pigm. 2013, 97, 397.
    24. (a) Park, S. S.; Won, Y. S.; Choi, Y. C.; Kim, J. H. Energy & Fuels 2009, 23, 3732 (b) Jung1, K. Y.; Kim, J. Y.; Min, C. D.; Kim, Y. S. J. Nanosci. Nanotechnol. 2012, 12, 3296.
    25. (a) Ting, H. C.; Tsai, C. H.; Chen, J. H.; Lin, L. Y.; Chou, S. H.; Wong, K. T.; Huang, T. W.; Wu, C. C. Org. Lett. 2012, 14, 6338. (b) Kim, S. J.; Heo, D. U.; Yoo, B. J.; Kim, B.; Ko, M. J.; Cho, M. J.; Choi, D. H. Synth. Met. 2012, 162, 2095. (c) Lu, X.; Jia, X.; Wang, Z.-S.; Zhou, G. J. Mater. Chem. A 2013, DOI: 10.1039/C3TA11398A.
    26. (a) Ren, X.; Jiang, S.; Cha, M.; Zhou, G.; Wang, Z. S. Chem. Mater. 2012, 24, 3493. (b) Li, Q.; Shi, J; Li, H.; Li, S.; Zhong, C.; Guo, F.; Peng, M.; Hua, J.; Qina, J.; Li, Zhen J. Mater. Chem. 2012, 22, 6689. (c) Cao, D.; Peng, J.; Hong, Y.; Fang, X.; Wang, L.; Meier, H. Org. Lett. 2011, 13, 1610. (d) Sirohia, R.; Kim, D. H.; Yu, S.-C.; Lee, S. H. Dyes Pigm. 2012, 92, 1132.
    27. (a) Hong, Y.; Liao, J.-Y.; Fu, J.; Kuang, D.-B.; Meier, H.; Su, C.-Y.; Cao, D. Dyes Pigm. 2012, 94, 481. (b) Hong, Y.; Liao, J.-Y.; Cao, D.; Zang, X.; Kuang, D.-B.; Wang, L.; Meier, H.; Su, C.-Y. J. Org. Chem. 2011, 76, 8015.
    28. (a) Nishiwaki, M.; Tezuka, M.; Shirahata, T.; Misaki, Y. Chem. Lett. 2011, 40, 467. (b) Chen, G.; Mahmud, I.; Dawe, L. N.; Daniels, L. M.; Zhao, Y. J. Org. Chem. 2011, 76, 2701. (c) Massue, J.; Bellec, N.; Guerro, M.; Bergamini, J.-F.; Hapiot, P.; Lorcy, D. J. Org. Chem. 2007, 72, 4655. (d) Cocherel, N.; Leriche, P.; Ripaud, E.; Gallego-Planas, N.; Frere, P.; Roncali, J. New J. Chem. 2009, 33, 801. (e) Ripaud, E.; Leriche, P.; Cocherel, N.; Cauchy, T.; Frere, P.; Roncali, J. Org. Biomol. Chem. 2011, 9, 1034. (f) Chen, G.; Mahmud, I.; Dawe, L. N.; Zhao, Y. Org. Lett. 2010, 12, 704. (g) Guerro, M.; Pham, N. H.; Massue, J.; Bellec, N.; Lorcy, D. Tetrahedron 2008, 64, 5285.
    29. Wang, C.; Batsanov, A. S.; Bryce, M. R.; Howard, J. A. K. Synthesis 1998, 11, 1615.
    30. Miyaura, N.;Yamada, K.; Suginome, H.;Suzuki, A. J. Am. Chem. Soc. 1985, 107, 972.
    31. Milstein, D.; Stille, J. K. J. Am. Chem. Soc. 1978, 100, 3636.
    32. Parg, R. P.; Kilburn, J. D.; Ryan, T. G. Synthesis 1994, 195.
    33. Meth-Cohn, O; Stanforth, S. P. Comp. Org. Syn. 1991, 2, 777.
    34. Knoevenagel, E. Ber. Dtsch. Chem. Ges. 1898, 31, 2596.

    下載圖示
    QR CODE