簡易檢索 / 詳目顯示

研究生: 曾國俊
Kuo-Chun Tseng
論文名稱: 光學微環陣列共振感測器之研究
Study of Optical Resonant Microring Array Sensor
指導教授: 曹士林
Tsao, Shyh-Lin
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 101
中文關鍵詞: 共振腔雷射微環共振器
英文關鍵詞: fabry-perot resonator laser, micoring resonator
論文種類: 學術論文
相關次數: 點閱:171下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文為研究內含光纖光柵非對稱性共振腔雷射,並結合微環共振器的光濾波器所組成一分波多工之光學生物感測系統。我們利用共振腔原理設計了一個非對稱性之共振腔體,產生多波長的單模雷射之簡易實用的分波多工系統之訊號源。此外,我們模擬應用微環共振器的光濾波器特性,在環形波導區域,利用生物物質之折射率變化,藉此從波導的輸出端擷取出不同的特定信號,並於此論文中,設計微環形共振腔的幾何結構,對於其不同共振波長的影響且找出不同波長之最適合波導參數,並探討其感測功率靈敏度之分析。

    In this thesis, we establish WDM light source and design the silicon-on-insulator (SOI) waveguide microring cavity structures and combine these two parts to achieve a bio-sensing system.
    An 1.5 μm SOA, 1×4 channel WDM MUX/DeMUX, 50:50 2×2 fiber couplers are used to achieve a WDM symmetric resonator laser. By combining the resonator laser and fiber gratings together, we can provide a well performance multi-level WDM light source. Besides, we design a microring structures for the sensor array. By injecting the different bio-fluid, the refractive index of coverd waveguide can be changed. The particular wavelength which can be droped through the micoring resonators. Based on the characteristics of index sensing, it shows the possibility for optical biosensor.
    The suitable parameters of the micoring resonator for different wavelength and the transmission status are discussed in the thesis. We estimated the output transitivity (out port) of the microring resonator by using the Finite Difference Time Domain (FDTD) method. The path loss and SNR were calculated by employing the FDTD method and the coupling efficiency between ring and bus waveguides were estimated by using the FDTD method. In this thesis , we also design the geometric structure of resonance cavity to see different resonances and find out suitable parameters for waveguide and analyze the sensitivity of detecting power.

    Contents Chinese Abstract…………………………………………………………i English Abstract………………………………...…………………….....ii Acknowledgment………………………………………………………. iv Contents ………………………………………….……….………..….…v List of Figures ………………………………………………...…..….. viii List of Tables ……………………………………….….……….….…xvii Chapter 1 Introduction…………………………………......……1 1-1 Introduction of Material…….........................................……1 1-1-1 Optical Fibers…………………………………..………………...1 1-1-2 SOI Material……………………………………………………...1 1-2 Introduction of Microring Resonators as Passive Components……3 1-3 Bio-Sensing Applications………………………………………………5 1-4 Organization of the Thesis………………………………………………6 Chapter 2 Multi-Wavelength Fiber Laser……...……..…..…..8 2-1 The Structure of the Asymmetrical Resonator Fiber Laser….........…….9 2-1-1 Broadband SOA in the Resonator Laser..............................……..9 2-1-2 Description of The Experimental Setup...............................…….10 2-2 Theory of General Laser Resonance………...…....………...…...……..11 2-2-1 E-Field Models of Asymmetric Resonator Cavity...............…….12 2-2-1-1 E-Field of the Fiber Loop Mirror………………………12 2-2-1-2 General Theoretical Model of the Asymmetric Resonator Laser…………………………………………………17 2-2-2 Numerical Results of Our Asymmetric Resonator Laser…….....21 2-3 Experimental Results of Our Asymmetric Resonator Lasers………….21 2-3-1 L-I Curve of Asymmetric Resonator Laser with Different Driving Current of the SOA ...…………………………………………...22 2-3-2 Experimental Spectrum of the Asymmetric Resonator Laser….24 2-3-3 Analysis of the Stability and the Power Variation of Our CW Laser…………………………………………………………….25 2-4 Polarization State Analysis of the Asymmetric Laser…………………26 2-5 Summary.……………...…...…………………………………..………27 Chapter 3 Design and Analysis the Optimized Parameter for Four Wavelengths of Microring Resonatiors in Biosensor Application……...…………..…..…..…41 3-1 The background and Introduction of Biosensor…….......…………...…42 3-2 The Theory of Microring Resonators……………………...…….…..…46 3-3 Working principle of microring resonator devices…..…………………47 3-3-1 Basic principle of microring resonator…………………...…….47 3-3-2 The lateral coupling configuration………....……………………48 3-3-3 Calculation of the intensity relation of our biochemical microring sensor……………………………………………………………49 3-4 Simulation Results of our design radius of microring resonator for four wavelengths.....…………………………………………...……………53 3-5 Summary…………………………………….......………………..…54 Chapter 4 Silicon Microring Resonators for Biochemical Sensing Application……………………….…..…65 4-1 Introduction of the Microring Sensors’ Sensing Mechanisms…………66 4-1-1 Homogeneous Sensing……..………………………...……….....68 4-1-2 Surface Sensing…………………………………..……………..69 4-1-3 The Evanescent Wave…………………………………………...69 4-2 Sensing Techniques of Microring Sensors…….……………………….73 4-2-1 Resonant Wavelength Shift Scheme……………………………..73 4-2-2 Intensity Variation Scheme……………………………………...73 4-3 Design Considerations for Microring Resonators Used in Sensing Applications………………………………….………………………..74 4-4 The process of Bio-molecular DNA Collecting………………………..75 4-5 Sensitivity of Microring Resonators…………………………………77 4-5-1 Classification of Sensitivity…………………………………….77 4-5-2 Device and waveguide Sensitivity……………………………….78 4-5-3 Waveguide Sensitivity Sw…………………………………….....79 4-6 Analysis of Waveguide Sensitivity……………………………………80 4-7 Summary…………………………………………………………….81 Chapter 5 Discussion and Conclusions………………………….90 References..……………………………………………………………...93 Publication List …………………………….………………….….….xviii

    Reference
    [1] J.-N. Maran, Radan Slavík, Sophie LaRochelle, and Miroslav Karásek, “Chromatic dispersion measurement using a multiwavelength frequency-shifted feedback fiber laser,” IEEE Trans. Instrum. Meas., vol. 53, pp. 67-71, 2004.
    [2] E. Achaerandio, S. Jarabo, S. Abad, and M. López-Amo, “New WDM amplified network for optical sensor multiplexing,” IEEE Photon. Technol. Lett., vol. 11, pp. 1644-1646, 1999.
    [3] J. Yang, K. Zhou, Y. Liu and S. C. Tjin, “Photonics true-time-delay unit for phased-array antenna using multiwavelength fiber laser based on a sagnac interferemetric filter,” International Journal of Infrared and Millimeter Waves, vol. 23, no. 6, pp.891-897, 2002.
    [4] J. L. Yang, S.C. Tjin and N.Q. Ngo, “A novel wavelength switchable fiber laser source and its application in photonics beamforming for optically controlled phased array antenna,” Applied Physics B: Lasers and Optics, vol. 78, pp. 345-349, 2004.
    [5] W. Zhang, J.A.R. Williams, L. Zhang, I. Bennion,” Optical fiber grating based Fabry-Perot resonator for microwave signal processing”, Conference on Lasers and Electro-Optics, pp.330-331, 2000.
    [6] Y.Z. Xu, H.Y. Tam, W.C. Du, M.S. Demokan, “Tunable dual-wavelength-switching fiber grating laser”, IEEE Photonics Technology Letters, vol.10, pp.334-336, 1998.
    [7] B.Pezeshki, G.W. Yoffe, V. Agrawal, M. Hagberg, S. Zou, “633 nm fiber grating-stabilized diode laser”, IEEE Lasers and Electro-Optics Society 1999 12th Annual Meeting LEOS '99., vol.1, pp.333-334, 1999.
    [8] L. R. Chen, “Multi-wavelength SOA-based fiber ring laser with tunable wavelength spacing using a programmable high-birefringence fiber loop mirror,” IEEE Lasers and Electro-Optics Society Annual Meeting (LEOS'03), Tucson, Arizona, 26-30 October 2003, paper ThFF5.
    [9] L. Boivin, S. Taccheo, C. R. Doerr, P. Schiffer, L. W. Buhl, R. Monnard, and W. Lin, “400 Gb/s transmission (40 Ch.×10 Gb/s) over 544 km from a spectrum-sliced supercontinuum source,” Optical Fiber Communication Conference 2000, vol. 1, pp. 146-148, 2000.
    [10] L. F. Stokes, M. Chodorow, and H. J. Shaw, “All-single-mode fiber resonator,” Optics Lett., vol. 7, no. 6, pp. 288-290, 1982.
    [11] S. N. Savenkov, K. E. Yushtin, B. M. Kolisnychenko, and Y. A. Skoblya, “On the one-to-one correspondence of Mueller and Jones matrix formalisms under nature condition,” International Conference on Mathematical Methods in Electromagnetic Theory (MMET 98), vol. 1, pp. 444-446, 1998.
    [12] P. Urquhart, “Fiber lasers with loop reflectors,” Applied Optics, vol. 28, pp. 3759-3767, 1989.
    [13] P. Delansay, H. Kim and L. Tamil, “Assessment of the performance limitations of a dense WDM metropolitan network in the 1300 nm window using semiconductor optical amplifiers and Raman amplifiers,” The Pacific Rim Conference on Lasers and Electro-Optics, 1999.(CLEO/Pacific Rim '99), vol. 3, pp. 781 - 782, 1999.
    [14] I. Roudas, N. Antoniades, R.E. Wagner, S.F. Habiby and T.E. Stern, “Influence of filtered ASE noise and optical filter shape on the performance of a WADM cascade,” Integrated Optics and Optical Fibre Communications, vol. 2, pp. 143-146, 1997.
    [15] S.L. Zhang, P.M. Lane and J.J. O'Reilly, “Effect of EDFA ASE noise on the performance of millimetre-wave fibre radio communication systems,” Internatonal Topical Meeting on Microwave Photonics, pp. 149-152, 1996.
    [16] J. Bromage, L.E. Nelson, C.H. Kim, P.J. Winzer, R.-J. Essiambre and R.M. Jopson, “Relative impact of multiple-path interference and amplified spontaneous emission noise on optical receiver performance,” Optical Fiber Communication Conference and Exhibit (OFC 2002), pp. 119-120, 2002.
    [17] J. Ing-Fa, L. San-Liang, W. Chi-Yu, L. Lih-Wen and H. Wen-Jeng, “Integrated DWDM laser arrays with stable and high-SMSR wavelengths,” The 4th Pacific Rim Conference on Lasers and Electro-Optics, vol. 2, pp. II-52 - II-53, 2001.
    [18] A.M. Clarke, P.M. Anandarajah and L.P. Barry, “Generation of widely tunable picosecond pulses with large SMSR by externally injecting a gain-switched dual laser source,” IEEE Photon. Technol. Lett., vol. 16, pp. 2344-2346, 2004.
    [19] Kevin H. Liu, Brian J. Wilson, and John Y.Wei, “A scheduling application for WDM optical networks,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 10, pp. 2041–2050, 2000.
    [20] Keyao Zhu and Biswanath Mukherjee, “Traffic grooming in an optical WDM mesh network,” IEEE Journal on Selected Areas in Communications, vol. 20, no. 1, pp. 122–133, 2002.
    [21] Adrian J. Keating and Arthur James Lowery, “Wavelength stabilization in packet-switched WDM networks,” IEEE Journal of Lightwave Technology, vol. 15, no.1, pp. 76–85, 1997.
    [22] Tarek A. Ramadan, Robert Scarmozzino, and Richard M. Osgood, “A novel 1×4 coupler-multiplexer permutation switch for WDM applications,” IEEE Journal of Lightwave Technology, vol. 18, no. 4, pp. 579–588, 2000.
    [23] M. Misono, N. Henmi, T. Hosoi, and M. Fujiwara, “High-speed wavelength switching and stabilization of an acoustooptic tunable filter for WDM network in broadcasting stations,” IEEE Photonics Technology, vol. 8, no. 4, pp. 572–574, 1996.
    [24] H. G. Bach, A. Umbach, S. van Waasen, R. M. Bertenburg, and G. Unterborsch, “Ultrafast monolithically integrated InP-based photoreceiver: OEIC-design, fabrication, and system application,” IEEE Journal of Selected Topics in Quantum Electronic, vol. 2, no. 2, pp. 418–423, 1996.
    [25] A. F. Jezierski and P. J. R. Layborn, “Integrated semiconductor ring lasers,” Inst. Elect. Eng. Proc. J., vol. 135, pp. 17–24, Feb. 1988.
    [26] T. Krauss, P. J. R. Laybourn, and J. Roberts, “CW operation of semiconductor ring lasers,” Electon. Lett., vol. 26, pp. 2095–2097, Dec.1990.
    [27] S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, “FD-TD computational electromagnetics simulations of microring and microdisk lasers,” in Opt. Soc. Amer. Annu. Meet., Rochester, NY, paper ThZ4, Oct. 1996.
    [28] D. Rafizadeh, J. P. Zhang, L. Wang, S. C. Hagness, A. Taflove, S. T. Ho, and R. C. Tiberio, “Semiconductor microcavity resonator multiplexer/demultiplexer,” in Opt. Soc. Amer. Annu. Meet., Rochester, NY, paper ThP4, Oct. 1996.
    [29] E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J., vol. 48, pp. 2103–2132, Sept. 1969.
    [30] J. P. Hohimer, D. C. Craft, G. R. Hadley, G. A. Vawter, and M. E.Warren, “Single-frequency continuous-wave operation of ring resonator diode lasers,” Apply Physics Letters, vol. 59, pp. 3360–3362, Dec. 1991.
    [31] H. Han, M. E. Favaro, D. V. Forbes, and J. J. Coleman, “InxGa1fxAs-AlyGa1fyAs-GaAs strained-layer quantum-well hetero structure circular ring lasers,” IEEE Photonics Technology Letters, vol. 4, pp. 817–819, Aug. 1992.
    [32] P. P. Absil, J. V. Hryniewicz, B. E. Little, F. G. Johnson, K. J. Ritter, and P. T. Ho. “Vertically coupled microring resonators using polymer wafer bonding”. IEEE Photonics Technology Letters, vol. 13 pp. 49-51, 2001.
    [33] F. C. Blom, H. Kelderman, H. W. J. M. Hoekstra, A. Driessen, Th. J. A. Popma, S. T. Chu, and B. E. Little. “A single channel dropping Flter based on a cylindrical microresonator” Optics Communications, vol.167 pp.77-82, 1999.
    [34] S. Suzuki, K. Shuto, and Y. Hibino, “Integrated-optic ring resonators with two stacked layers of silica waveguide on Si,” IEEE Photonics Technology Letters, vol. 4, pp. 1256–1258, 1992.
    [35] S. T. Chu, “Glass ring resonators,” in 1997 Kanagawa Academy of Science and Technology Annual Research Seminar, Kawasaki, Japan.
    [36] B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Hans, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO microring resonator optical channel dropping filters,” IEEE Photonics Technology Letters, vol. 10, pp. 549–551, Apr. 1998.
    [37] D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, and R. C. Tiberio, “Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6-nm free spectral range,” Optics Letters, vol. 22, no. 16, pp. 1244–1226, 1997.
    [38] B. J. Gallacher, J. Hedley, J. S. Burdess, A. J. Harris, and M. E. McNie, “Electrostatic tuning of a micro-ring gyroscope,” in Tech. Proc. 2004 NSTI Nanotechnology Conference and Trade Show, vol. 1, ch. 9, Boston, MA, 2004, pp. 430–433.
    [39] J. V. Hryniewicz, Y. J. Chen, S. H. Hsu, C.-H. D. Lee, and G. A. Porkolab, “Ultrahigh vacuum chemically assisted ion beam etching system with a three grid ion source,” J. Vacuum Sci. Technol. A, vol. 15, pp. 616–621, 1997.
    [40] M. E. McNie, J. S. Burdess, A. J. Harris, J. Hedley, and M.Young, “High aspect ratio ring gyroscope fabricated in [100] silicon on insulator (SOI) material,” in Proc. International Conference on Solid State Sensors and Actuators, Sendai, Japan, Jun. 7–10, 1999.
    [41] Dominik G. Rabus, “Realization of Optical Filters using Ring Resonators with integrated Semiconductor Optical Amplifiers in GaInAsP / InP,” pp. 29, 2002.
    [42] J. Tidmarsh, S. Fasham, P. Stopford, A. Tomlinson, T. Bestwick, “A narrow linewidth laser for WDM applications using silicon waveguide technology,” LEOS '99. IEEE Lasers and Electro-Optics Society, vol. 2, pp. 497–498, 1999.
    [43] M. K. Chin, C. A. Youtsey, W. Zhao, T. Pierson, S. L. Wu, Z. Ren, R. Wang, L. Wang, Y. G. Zhao, and S. T. Ho, “Ultra-compact directional couplers and race-track microcavity resonators as building blocks for WDM devices,” in Proc. CLEO'99, Baltimore, MD, May 1999, Postdeadline paper CPD22.
    [44] T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, P. R. Routley, M. R. Josey, “Effects of grating heights on highly efficient unibond SOI waveguide grating couplers,” IEEE Photonics Technology Letters, vol. 12, pp. 59–61, 2000.
    [45] Y. Hida, Y. Inoue, F. Hanawa, T. Fukumitsu, Y. Enomoto, N. Takato, “Silica-based 1/spl times/32 splitter integrated with 32 WDM couplers using multilayered dielectric filters for fiber line testing at 1.65/spl mu/m,” IEEE Photonics Technology Letters, vol. 11, pp. 96–98, 1999.
    [46] J. P. Raskin, A. Viviani, D. Flandre, J. P. Colinge, “Substrate crosstalk reduction using SOI technology,” IEEE Transactions on Electron Devices, vol. 44, pp. 2252–2261, 1997.
    [47] J. Schmidtchen, A. Splett, B. Schuppert, K. Petermann, “Low loss integrated-optical rib-waveguides in SOI,” Proceedings of 1991 SOI Conference on IEEE International, pp. 142–143, 1991.
    [48] Antonello Cutolo, Mario Iodice, Paolo Spirito, and Luigi Zeni, “Silicon electro-optic modulator based on a three terminal device integrated in a low-loss single-mode SOI waveguide.” IEEE Journal of Lightwave Technology, vol. 15, no. 3, pp. 505–518, 1997.
    [49] P. De Dobbelaere, K. Falta, S. Gloeckner, and S. Patra, “Digital MEMS for optical switching,” IEEE Communications Magazine, vol. 40, no. 3, pp. 88–95, 2002.
    [50] Y. -A. Peter, F. Gonte, H. P. Herzig, and R. Dandliker, “Micro-optical fiber switch for a large number of interconnects using a deformable mirror,” IEEE Photonics Technology Letters, vol. 14, no. 3, pp. 301–303, 2002.
    [51] T. Bakke, C. P. Tigges, and C. T. Sullivan, “1×2 MOEMS switch based on silicon-on-insulator and polymeric waveguides,” Electronics Letters, vol. 38, no. 4, pp. 177–178, 2002.
    [52] R. Kasahara, M. Yanagisawa, T. Goh, A. Sugita, A. Himeno, M. Yasu, and S. Matsui, “New structure of silica-based planar lightwave circuits for low-power thermooptic swutch and its application to 8×8 optical matrix switch,” Journal of Lightwave Technology, vol. 20, no. 6, pp. 993–1000, 2002.
    [53] T. Sakata, H. Togo, M. Makihara, F. Shimokawa, and K. Kaneko, “Improvement of switching time in a thermocapillarity optical switch,” Journal of Lightwave Technolongy, vol. 19, no. 7, pp. 1023–1027, 2001.
    [54] Chung-Yen Chao, Wayne Fung, and L. Jay Guo, “Polymer Microring Resonators for Biochemical Sensing Applications,” IEEE Jounal of selected topic in quantum electronics, vol. 12, no. 1, pp. 132–142, 2006.
    [55] Chung-Yen Chao and L. Jay Guo, “Design and Optimization of Microring Resonators in Biochemical Sensing Applications,” Journal of Lightwave Technology, vol. 24, no. 3, pp. 1395–1402, 2006.
    [56] Francisco Prieto, Andreu Llobera, David Jiménez, Carlos Doménguez, Ana Calle, and Laura M. Lechuga, “Design and Analysis of Silicon Antiresonant Reflecting Optical Waveguides for Evanscent Field Sensor,” Jounal of Lightwave Technology, vol. 18, no. 7, pp. 966–972, 2000.

    QR CODE