研究生: |
游逸翔 You, Yi-Siang |
---|---|
論文名稱: |
辛矩陣與矩陣對之分類 The Classification of Symplectic Matrices and Pairs |
指導教授: |
謝世峰
Shieh, Shih-Feng |
學位類別: |
碩士 Master |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 30 |
中文關鍵詞: | symplectic matrix 、symplectic pair 、complementary bases theorem 、Hermitian matrix 、Lagrangian subspace 、minimal classification |
英文關鍵詞: | symplectic matrix, symplectic pair, complementary bases theorem, Hermitian matrix, Lagrangian subspace, minimal classification |
DOI URL: | https://doi.org/10.6345/NTNU202202058 |
論文種類: | 學術論文 |
相關次數: | 點閱:102 下載:18 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
無中文摘要
In applications a symplectic matrix is often required to be partitioned with a nonsingular block. By applying the complementary bases theorem of Dopico and Johnson in [3], we can rearrange a symplectic matrix with a swap matrix to obtain a nonsingular block. We classify symplectic matrices with corresponding swap matrices. Moreover, a rearrangement of symplectic pair by Mehrmann and Poloni in [8] merges a regular symplectic pair into a symplectic matrix. Therefore
we can classify regular symplectic pairs with similar approach.
References
[1] R. Abraham and J. Marsden. Foundations of Mechanics, second ed. Addison-Wesley, Reading, 1978.
[2] V.I. Arnold. Mathematical Methods in Classical Mechanics. Springer-Verlag, Berlin, 1978.
[3] Froiln M. Dopico and Charles R. Johnson. Complementary bases in symplectic matrices and a proof that their determinant is one. Linear Algebra and its Applications,
419(2):772-778, 2006.
[4] H. Fassbender. Symplectic Methods for the Symplectic Eigenproblem. Springer-Verlag, Berlin, 2000.
[5] D.S. Mackey and N. Mackey. On the Determinant of Symplectic Matrices, Numerical Analysis Report No. 422. Manchester Centre for Computational Mathematics, Manchester, England, 2003.
[6] D. McDuff and D. Salamon. Introduction to Symplectic Topology. Clarendon Press, Oxford, 1995.
[7] V. Mehrmann. The autonomous linear quadratic control problem - theory and numerical solutions, lecture notes in control and information sciences, vol. 163, 1991.
[8] Volker Mehrmann and Federico Poloni. Doubling algorithms with permuted lagrangian graph bases. SIAM Journal on Matrix Analysis and Applications, 33(3):780-805, 2012.