簡易檢索 / 詳目顯示

研究生: 游逸翔
You, Yi-Siang
論文名稱: 辛矩陣與矩陣對之分類
The Classification of Symplectic Matrices and Pairs
指導教授: 謝世峰
Shieh, Shih-Feng
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 30
中文關鍵詞: symplectic matrixsymplectic paircomplementary bases theoremHermitian matrixLagrangian subspaceminimal classification
英文關鍵詞: symplectic matrix, symplectic pair, complementary bases theorem, Hermitian matrix, Lagrangian subspace, minimal classification
DOI URL: https://doi.org/10.6345/NTNU202202058
論文種類: 學術論文
相關次數: 點閱:102下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無中文摘要

    In applications a symplectic matrix is often required to be partitioned with a nonsingular block. By applying the complementary bases theorem of Dopico and Johnson in [3], we can rearrange a symplectic matrix with a swap matrix to obtain a nonsingular block. We classify symplectic matrices with corresponding swap matrices. Moreover, a rearrangement of symplectic pair by Mehrmann and Poloni in [8] merges a regular symplectic pair into a symplectic matrix. Therefore
    we can classify regular symplectic pairs with similar approach.

    Contents Abstract 1 1 Introduction 2 2 Preliminaries 4 3 The Classification of Symplectic Matrices 13 4 The Classification of Symplectic Pairs 19 5 Conclusion and Future Works 29 6 Refrences 29

    References
    [1] R. Abraham and J. Marsden. Foundations of Mechanics, second ed. Addison-Wesley, Reading, 1978.
    [2] V.I. Arnold. Mathematical Methods in Classical Mechanics. Springer-Verlag, Berlin, 1978.
    [3] Froiln M. Dopico and Charles R. Johnson. Complementary bases in symplectic matrices and a proof that their determinant is one. Linear Algebra and its Applications,
    419(2):772-778, 2006.
    [4] H. Fassbender. Symplectic Methods for the Symplectic Eigenproblem. Springer-Verlag, Berlin, 2000.
    [5] D.S. Mackey and N. Mackey. On the Determinant of Symplectic Matrices, Numerical Analysis Report No. 422. Manchester Centre for Computational Mathematics, Manchester, England, 2003.
    [6] D. McDuff and D. Salamon. Introduction to Symplectic Topology. Clarendon Press, Oxford, 1995.
    [7] V. Mehrmann. The autonomous linear quadratic control problem - theory and numerical solutions, lecture notes in control and information sciences, vol. 163, 1991.
    [8] Volker Mehrmann and Federico Poloni. Doubling algorithms with permuted lagrangian graph bases. SIAM Journal on Matrix Analysis and Applications, 33(3):780-805, 2012.

    下載圖示
    QR CODE