簡易檢索 / 詳目顯示

研究生: 林珮盈
Lin, Pei-Ying
論文名稱: 奈米金表面電漿共振應用於不同微結構之有機氣體感測器研製
A Study on Diversified VOC Sensor Microstructures Utilizing Localized Surface Plasmon Resonance of Gold Nanoparticles
指導教授: 呂家榮
Lu, Chia-Jung
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 93
中文關鍵詞: 奈米金二氧化矽局部表面電漿共振陽極氧化鋁揮發性有機化合物
英文關鍵詞: gold naonparticles
DOI URL: http://doi.org/10.6345/THE.NTNU.DC.020.2018.B05
論文種類: 學術論文
相關次數: 點閱:203下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用不同基材研究兩種不同微結構的氣體感測器,分別在陽極氧化鋁薄膜與玻璃毛細管內部塗佈奈米金粒子,藉由其表面電漿共振現象,以量測多種不同官能基的揮發性有機化合物。以上兩個氣體感測器皆搭配反射式光纖,藉此縮小感測光徑範圍,只需單一光點即可進行氣體偵測。經熱處理過的奈米金陽極氧化鋁薄膜感測器,所偵測的八種氣體皆呈現良好的線性關係(R2 >0.99)及再現性,偵測下限則尚有進步的空間,範圍為275 ~871 ppm。另外,使用3-胺基丙基三乙氧基矽烷和四乙氧基矽烷,透過自組裝薄膜反應機制將多層奈米金粒子修飾於內徑為0.8 mm的玻璃毛細管內壁,並與氣相層析儀串聯,成功地偵測十六種有機氣體,其結果顯示具有良好再現性、靈敏度及線性關係(R2 >0.99),對於分子量、極性與折射率越大且沸點越高的化合物有較好的靈敏度,其中m-xylene與cyclohexanone的偵測下限皆小於20 ng。這些局部表面電漿共振感測器,開啟了未來偵測器進一步微小化的可能性。

    In this study, we develop two different surface structures of gas sensors by using different substrates. To dectect volatile organic compounds (VOCs) with different functional groups by localized surface plasmon resonance (LSPR), gold nanoparticles were modified on the anodic aluminum oxide (AAO) template and on the inner surface of glass capillary tube. The above two gas sensors detect gases with the reflective optical fiber, which can reduce the sensing range to be just a single light spot. The nanogold AAO sensor treated by heating detects eight organic gases, and the result shows good linearity (R2 > 0.99) and reproducibility. The limit of detection ranging from 275 to 871 ppm is still much to be desired. In addition, the multilayer gold nanoparticles were coated on the inner surface of the glass capillary tube (i.d. 0.8 mm) by the self-assembled film reaction with 3-aminopropyltriethoxysilane (APTMS) and tetraethoxynonane (TEOS). The multilayer gold nanoparticles sensor is integrated into the gas chromatograph (GC) system to successfully detect sixteen organic gases. The results indicates that multilayer gold nanoparticles sensor has good reproducibility, sensitivity, and linearity (R2 >0.99). Besides, the multilayer gold nanoparticles sensor has been demonstrated better sensitivity for compounds with higher molecular weight, polarity, refractive index and boiling point. The detection limit of m-xylene and cyclohexanone can be below 20 ng. These sensor structures make possible for future miniaturization of LSPR detectors.

    摘 要 I ABSTRACT II 目 錄 III 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 研究背景 1 1.2 揮發性有機氣體 3 1.3 奈米材料 5 1.3.1 小尺寸效應 5 1.3.2 量子尺寸效應 6 1.3.3 表面效應 7 1.3.4 光學特性 8 1.4 表面電漿共振原理 11 1.4.1 金屬表面電漿原理 11 1.4.2 表面電漿共振現象 13 1.5 表面電漿共振之應用 15 1.5.1 感測器起源 15 1.5.2 生化感測 17 1.5.3 氣體感測 19 1.6 氣體等溫吸附曲線 24 第二章 實驗部分 27 2.1 藥品、實驗器材與儀器設備 27 2.1.1 實驗藥品 27 2.1.2 實驗器材 29 2.1.3 儀器設備 30 2.2 奈米金粒子之合成 33 2.3 陽極氧化鋁薄膜感測器製作流程 35 2.3.1 AAO薄膜之清洗 35 2.3.2 AAO薄膜塗佈上奈米金粒子 35 2.3.3 奈米金AAO薄膜之熱處理 35 2.3.4 奈米金AAO薄膜感測器之組裝 36 2.4 多層奈米金自組裝於玻璃毛細管內部製作流程 37 2.4.1 玻璃毛細管之清洗 37 2.4.2 修飾多層奈米金粒子於玻璃毛細管內層 37 2.4.3 玻璃毛細管外層之銀鏡反應 40 2.4.4 多層奈米金玻璃毛細管感測器之組裝 41 2.5 感測系統 43 2.5.1 AAO薄膜感測系統之架設 43 2.5.2 多層奈米金玻璃毛細管感測系統之架設 46 2.6 數據處理 47 2.6.1 UV-Vis光譜數據計算方式 47 2.6.2 感測訊號之處理 48 第三章 結果與討論 51 3.1 奈米金粒子相關之分析 51 3.1.1 奈米金溶液之分析 51 3.1.2 奈米金修飾於AAO之分析 53 3.1.3 多層奈米金自組裝於玻璃表面之鑑定 55 3.2 空白AAO材料測試 58 3.3 AAO薄膜有無修飾上奈米金之影響 61 3.4 奈米金AAO薄膜感測器之分析 65 3.4.1 熱處理之影響 65 3.4.2 氣體偵測結果 66 3.5 奈米金AAO薄膜於有機氣體下感測機制之探討 70 3.6 奈米金玻璃毛細管感測器實驗參數之探討 71 3.6.1 銀鏡有無之影響 71 3.6.2 奈米金粒子層數之分析 73 3.6.3 載流氣體流速之影響 75 3.7 多層奈米金玻璃毛細管感測器再現性測試 78 3.8 多層奈米金玻璃毛細管感測器之氣體偵測 80 第四章 結論 89 參考文獻 90

    [1] 陳昱銓. 奈米銀光學感測器之表面修飾與氣體選擇性研究暨微機電-氣體樣品前濃縮裝置之自動化系統建立. 輔仁大學, 新北市, 2008.
    [2] Chen, F.-Y.; Chang, W.-C.; Jian, R.-S.; Lu, C.-J., Novel Gas Chromatographic Detector Utilizing the Localized Surface Plasmon Resonance of a Gold Nanoparticle Monolayer inside a Glass Capillary. Analytical Chemistry 2014, 86 (11), 5257-5264.
    [3] 李冠儀. 奈米金-氧化矽多層結構應用於有機氣體光學探針之研製. 國立臺灣師範大學, 台北市, 2016.
    [4] 行政院環境保護署 揮發性有機物空氣污染管制及排放標準 http://www.rootlaw.com.tw/LawArticle.aspx?LawID=A040300030003500-1020103.
    [5] 洪一德. 石化工業苯暴露勞工健康風險評估. 國立高雄第一科技大學, 2009.
    [6] IARC, Outdoor air pollution a leading environmental cause of cancer deaths. 2013.
    [7] 黎育蕙. 奈米複合材料局部表面電漿共振光纖毛細管偵測器的發展與應用. 國立臺灣師範大學, 台北市, 2017.
    [8] Kubo, R., Electronic Properties of Metallic Fine Particles. I. Journal of the Physical Society of Japan 1962, 17 (6), 975-986.
    [9] 李言榮, 惲., 材料物理學概論. 2003.
    [10] 馬振基, 奈米材料科技原理與應用. 2005.
    [11] 尹邦耀, 奈米時代. 2005.
    [12] 鄭嘉升. 奈米金屬薄膜表面電漿共振光譜之有機氣體反應特性研究. 輔仁大學, 新北市, 2006.
    [13] Willets, K. A.; Van Duyne, R. P., Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual Review of Physical Chemistry 2007, 58 (1), 267-297.
    [14] Faraday, M., X. The Bakerian Lecture. —Experimental relations of gold (and other metals) to light. Philosophical Transactions of the Royal Society of London 1857, 147, 145-181.
    [15] Mie, G., Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik 1908, 330 (3), 377-445.
    [16] 邱瑋懿. 以化學表面修飾法增強局部表面電漿共振感測器對氣體之反應. 國立臺灣師範大學, 台北市, 2015.
    [17] Raether, H., Surface plasmons on smooth and rough surfaces and on gratings. Springer: 1988; p 91-116.
    [18] Otto, A., Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik A Hadrons and nuclei 1968, 216 (4), 398-410.
    [19] Kretschmann, E., The angular dependence and the polarisation of light emitted by surface plasmons on metals due to roughness. Optics Communications 1972, 5 (5), 331-336.
    [20] Jorgenson, R.; Yee, S., A fiber-optic chemical sensor based on surface plasmon resonance. Sensors and Actuators B: Chemical 1993, 12 (3), 213-220.
    [21] Liedberg, B.; Nylander, C.; Lunström, I., Surface plasmon resonance for gas detection and biosensing. Sensors and Actuators 1983, 4, 299-304.
    [22] Yoo, S. M.; Kim, D.-K.; Lee, S. Y., Aptamer-functionalized localized surface plasmon resonance sensor for the multiplexed detection of different bacterial species. Talanta 2015, 132, 112-117.
    [23] Wakao, M.; Watanabe, S.; Kurahashi, Y.; Matsuo, T.; Takeuchi, M.; Ogawa, T.; Suzuki, K.; Yumino, T.; Myogadani, T.; Saito, A.; Muta, K.-i.; Kimura, M.; Kajikawa, K.; Suda, Y., Optical Fiber-Type Sugar Chip Using Localized Surface Plasmon Resonance. Analytical Chemistry 2017, 89 (2), 1086-1091.
    [24] Cheng, C.-S.; Chen, Y.-Q.; Lu, C.-J., Organic vapour sensing using localized surface plasmon resonance spectrum of metallic nanoparticles self assemble monolayer. Talanta 2007, 73 (2), 358-365.
    [25] Chen, K.-J.; Lu, C.-J., A vapor sensor array using multiple localized surface plasmon resonance bands in a single UV–vis spectrum. Talanta 2010, 81 (4), 1670-1675.
    [26] Karakouz, T.; Vaskevich, A.; Rubinstein, I., Polymer-Coated Gold Island Films as Localized Plasmon Transducers for Gas Sensing. The Journal of Physical Chemistry B 2008, 112 (46), 14530-14538.
    [27] Bingham, J. M.; Anker, J. N.; Kreno, L. E.; Van Duyne, R. P., Gas Sensing with High-Resolution Localized Surface Plasmon Resonance Spectroscopy. Journal of the American Chemical Society 2010, 132 (49), 17358-17359.
    [28] Kreno, L. E.; Hupp, J. T.; Van Duyne, R. P., Metal−Organic Framework Thin Film for Enhanced Localized Surface Plasmon Resonance Gas Sensing. Analytical Chemistry 2010, 82 (19), 8042-8046.
    [29] Bharadwaj, R.; Mukherji, S., Gold nanoparticle coated U-bend fibre optic probe for localized surface plasmon resonance based detection of explosive vapours. Sensors and Actuators B: Chemical 2014, 192, 804-811.
    [30] Shang, L.; Liu, C.; Watanabe, M.; Chen, B.; Hayashi, K., LSPR sensor array based on molecularly imprinted sol-gels for pattern recognition of volatile organic acids. Sensors and Actuators B: Chemical 2017, 249, 14-21.
    [31] Sing, K. S., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and applied chemistry 1985, 57 (4), 603-619.
    [32] 艾瑪特有限公司 無油式空氣壓縮機. http://www.airmart.com.tw/tw_product_detail.asp?Fkindno=F000002&Skindno=S000002&Pidno=201707210013.
    [33] Corporation, P. I. MFC readout power supply. http://she.mcut.edu.tw/p/412-1044-2113.php?Lang=zh-tw.
    [34] Ocean Optics, I. DH-2000 Family. https://oceanoptics.com/product/dh-2000-family.
    [35] Ocean Optics, I. Maya 2000 Pro. https://oceanoptics.com/product/maya2000-pro-custom/.
    [36] Tecnai, P. FE-TEM. https://www.hic.ch.ntu.edu.tw/TEM%E5%B7%A5/em4.html.
    [37] Company, F. E. a. I. FE-SEM http://www.che.ntu.edu.tw/ntuche/p_equip_booking/files/Intro_SEM_150331.pdf.
    [38] Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A., Turkevich Method for Gold Nanoparticle Synthesis Revisited. The Journal of Physical Chemistry B 2006, 110 (32), 15700-15707.
    [39] Curtis, H. D., Methods of silvering mirrors. Publications of the Astronomical Society of the Pacific 1911, 23 (135), 13-32.
    [40] Grabar, K. C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J., Preparation and characterization of Au colloid monolayers. Analytical chemistry 1995, 67 (4), 735-743.
    [41] Liu, S.; Zhu, T.; Hu, R.; Liu, Z., Evaporation-induced self-assembly of gold nanoparticles into a highly organized two-dimensional array. Physical Chemistry Chemical Physics 2002, 4 (24), 6059-6062.
    [42] Philipp, W. H., Polysiloxanes derived from the controlled hydrolysis of tetraethoxysilane as precursors to silica for use in ceramic processing. NASA Technical Memorandum 1990.
    [43] Cihlář, J., Hydrolysis and polycondensation of ethyl silicates. 1. Effect of pH and catalyst on the hydrolysis and polycondensation of tetraethoxysilane (TEOS). Colloids and surfaces A: Physicochemical and engineering aspects 1993, 70 (3), 239-251.
    [44] Brown, K. An Analysis of a New Approach to Sol-gel Synthesis: The Reaction of Formic Acid with Teos. Maryland, 2005.
    [45] Simplified representation of the hydrolysis and condensation of TEOS in the Stöber process. https://en.wikipedia.org/wiki/St%C3%B6ber_process.
    [46] 施正雄; 化學, 儀器分析原理與應用. 五南: 2012.

    下載圖示
    QR CODE