簡易檢索 / 詳目顯示

研究生: 林怡君
Yi-chun Lin
論文名稱: 西太平洋暖池南緣MD05-2925岩芯55萬年以來浮游有孔蟲氧碳同位素記錄
Stable carbon and oxygen isotope records of planktonic foraminifera of core MD05-2925, South margin of western Pacific Warm Pool during the last 550 ka
指導教授: 米泓生
Mii, Horng-Sheng
李孟陽
Lee, Meng-Yang
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 67
中文關鍵詞: 西太平洋暖池氧碳同位素浮游性有孔蟲所羅門海
論文種類: 學術論文
相關次數: 點閱:218下載:34
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分析位於所羅門海南部MD05-2925岩芯(9°20.61'S, 151°27.61'E,全長28.43公尺,水深1642公尺)上部10公尺Globigerina sacculifer、Globigerinoides ruber及Pulleniatina obliquiloculata三種浮游有孔蟲之氧碳同位素組成以探討西太平洋暖池南緣所羅門海域之古海洋演變。整根岩芯年代模式由G. sacculifer氧同位素記錄比對「低緯度區氧同位素綜合曲線」,佐以五個碳十四定年點,建立氧同位素地層第1階至第14階約55萬年的記錄。
    不同種屬浮游有孔蟲各有不同偏好生存深度,故可以之重建上層水體古水文變化。混合層種G. ruber (白色)與G. sacculifer,上部溫躍層P. obliquiloculata之氧同位素數值依照生存之水層位置與溫度由表水往溫躍層變重。而G.ruber碳同位素則因生機效應而與海水無機碳同位素產生偏移,導致G.ruber碳同位素並無依照生存水層深度分布。
    將G. sacculifer與P. obliquiloculata之氧同位素記錄與西太平洋暖池中心ODP 806B岩芯作比較,呈現出暖池南緣分布範圍於冰消期向北偏移,溫躍層深度於冰期進入冰消期時明顯變深。而在MIS 5.5時暖池中心與南緣間海表溫差極小,由於暖池中心與南緣氧同位素差異大,應為鹽度效應所致。
    冰期進入間冰期的冰消過程中,南濱洋受日照量影響產生暖化現象,釋放出大量二氧化碳,而融冰則造成南極中層水(AAIW)及亞南極模態水(SAMW)生成量的增高,西風帶往南極移動引起南極湧升作用增加,藉通氣作用將深海之高營養鹽及低碳同位素海水帶至南極中層水及亞南極模態水生成區,隨之傳送至赤道太平洋區。東赤道太平洋湧升流區岩芯記錄提供代表南極區氣候變遷的碳同位素數值偏低之訊號,並以多數岩芯具有碳同位素極小事件為特色。過去研究認為西赤道太平洋區於冰消期並無明顯碳同位素極小值事件發生,但MD05-2925岩芯之溫躍層浮游有孔蟲P. obliquiloculata於冰消期時則記錄到明顯的碳同位素極小值事件,與東赤道太平洋碳同位素極小值事件皆於10~11ka發生,顯示西赤道太平洋與南極高緯度區間,有著遙相關。

    Stable isotope data from Solomon Sea core MD05-2925 (9°20.61'S, 151°27.61'E, 28.43m in length, 1642m water depth) are presented from planktonic foraminifera Globigerinoides ruber, Globigerina sacculifer and Pulleniatina obliquiloculata (top 10m) . The age model for core MD05-2925 is based on correlation of the G. sacculifer oxygen isotope record to the Low Latitude Stake chronology and five radiocarbon dating.
    In order to reconstruct the hydrology during the last two glacial terminations in the south margin of the Western Equatorial Pacific Warm Pool, we use multiple species approach of planktonic foraminifera as the proxy of water column structure. We compare the oxygon and carbon isotope records of the surface-dwelling foraminifers G. ruber and G. sacculifer and thermocline dwelling P. obliquiloculata with the cores in the eastern equatorial Pacific upwelling region, central Western Equatorial Pacific Warm Pool, and Antarctica. We demonstrate that during the last two glacial terminations, there are obvious 13C minimum events related to the South Ocean warming and CO2 concentration increment. With the support like the oxygen isotope records , we demonstrate that thermocline in the south region of the western Pacific Warm Pool was deepen and was warmer during the last two terminations.

    摘要 I Abstract III 第一章 簡介 1 1.1 西太平洋暖池變化對氣候的影響 1 1.2 冰消期碳同位素的變化 6 1.3 所羅門海水文環境 8 1.4 研究目的 10 第二章 研究材料與方法 12 2.1 MD052925岩芯介紹 12 2.2 研究方法 13 2.2.1 岩芯處理 13 2.2.2 有孔蟲樣本挑選原則 13 2.2.3 質譜儀分析 16 2.3 年代模式 17 2.3.1 碳十四定年 17 2.3.2 氧同位素地層年代模式之建立 19 2.3.3 交叉頻譜分析 20 第三章 結果 21 3.1 MD052925岩芯氧碳同位素地層 21 3.2 55萬年來碳同位素記錄 25 3.3 十六萬年以來多種屬氧同位素記錄 28 3.4 十六萬年以來多種屬碳同位素記錄 31 第四章 討論 34 4.1 550ka以來暖池區浮游有孔蟲氧同位素記錄之比較 34 4.2 160ka以來混合層與溫躍層間氧同位素值變化 37 4.3 MD052925岩芯碳同位極小值事件之探討 46 4.3.1 Termination Ⅰ碳同位素最小值事件 48 4.3.2. Termination Ⅱ碳同位素最小值事件 52 第五章 結論 55 參考文獻 57 作者簡介 67

    Anderson, R.F., Ali, S., Bradtmiller, L.I., Nielsen, S.H.H., Fleisher, M.Q., Anderson, B.E., and Burckle, L.H., 2009, Wind-Driven Upwelling in the Southern Ocean and the Deglacial Rise in Atmospheric CO2: Science, v. 323, p. 1443-1448.
    Anderson, D.M., Prell, W.L., and Barratt, N.J., 1989, Estimates of Sea Surface Temperature in the Coral Sea at the Last Glacial Maximum: Paleoceanography, v. 4, p. 615-627.
    Andreasen, D.H., Ravelo, A.C., and Broccoli, A.J., 2001, Remote forcing at the Last Glacial Maximum in the Tropical Pacific Ocean: J. Geophys. Res., v. 106, p. 879-897.
    Bassinot, F.C., Labeyrie, L.D., Vincent, E., Quidelleur, X., Shackleton, N.J., and Lancelot, Y., 1994, The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal: Earth and Planetary Science Letters, v. 126, p. 91-108.
    Berger, Wolfgang H; Bickert, Torsten; Yasuda, Memorie K; Wefer, Gerold .,1996, Reconstruction of atmospheric CO2 from ice-core data and the deep-sea record of Ontong Java plateau: the Milankovitch chron, Geologische Rundschau, v. 85, p. 466-495.
    Beaufort, L., de Garidel-Thoron, T., Mix, A.C., and Pisias, N.G., 2001, ENSO-like Forcing on Oceanic Primary Production During the Late Pleistocene: Science, v. 293, p. 2440-2444.
    Bostock, H.C., Opdyke, B.N., Gagan, M.K., and Fifield, L.K., 2004, Carbon isotope evidence for changes in Antarctic Intermediate Water circulation and ocean ventilation in the southwest Pacific during the last deglaciation: Paleoceanography, v. 19, PA4013, doi:10.1029/2004PA001047.
    Brovkin, V., Ganopolski, A., Archer, D., and Rahmstorf, S., 2007, Lowering of glacial atmospheric CO2 in response to changes in oceanic circulation and marine biogeochemistry: Paleoceanography, v. 22, PA4202, doi:10.1029/2006PA001380.
    Broecker, W.S., 1986, Oxygen isotope constraints on surface ocean temperatures, Quat. Res., v. 26, p. 121-134.
    Conkright, M.E., R. A. Locarnini, H.E. Garcia, T.D. O’Brien, T.P. Boyer, C. Stephens, J.I. Antonov, 2002: World Ocean Atlas 2001: Objective Analyses, Data Statistics, and Figures, CD-ROM Documentation. National Oceanographic Data Center, Silver Spring, MD, p. 17.
    Clement, A. C., and Cane, M., 1999, A role for the tropical Pacific coupled ocean-atmosphere system on Milankovitch and millennial timescales. part I: A modelling study of tropical Pacific variability, in Mechanisms of Global Climate Change at Millennial Time Scales, Geophys. Monogr. Ser., vol. 112, edited by P. U. Clark et al., p. 363–371, AGU, Washington, D. C.
    de Boer, A.M., Sigman, D.M., Toggweiler, J.R., and Russell, J.L., 2007, Effect of global ocean temperature change on deep ocean ventilation: Paleoceanography, v. 22., doi:10.1029/2005PA001242.
    Delcroix, T., Henin, C., Porte, V., and Arkin, P., 1996, Precipitation and sea-surface salinity in the tropical Pacific Ocean: Deep Sea Research Part I: Oceanographic Research Papers, v. 43, p. 1123-1141.
    Delcroix, T., and McPhaden, M., 2002, Interannual sea surface salinity and temperature changes in the western Pacific warm pool during 1992-2000: J. Geophys. Res., v. 107, 8002, doi:10.1029/2001JC000862.
    Fedorov, A.V., and Philander, S.G., 2000, Is El Niño Changing?: Science, v. 288, p. 1997-2002.
    Grossman, E. L., 1987, Stable isotopes in modern benthic foraminifera: a study of vital effect. Journal of Foraminiferal Research, v. 17, p. 48-61.
    Hénin, C., du Penhoat, Y., and Ioualalen, M., 1998, Observations of sea surface salinity in the western Pacific fresh pool: Large-scale changes in 1992-1995: J. Geophys. Res., v. 103, p. 7523-7536.
    Iudicone, D., K.B. Rodgers, R. Schopp, and G. Madec, 2007, An Exchange Window for the Injection of Antarctic Intermediate Water into the South Pacific: Physical Oceanography, v. 37, p. 31-49.
    Lea, D.W., Pak, D.K., and Spero, H.J., 2000, Climate Impact of Late Quaternary Equatorial Pacific Sea Surface Temperature Variations: Science, v. 289, p. 1719-1724.
    Lindstrom, E., Lukas, R., Fine, R., Firing, E., Godfrey, S., Meyers, G., and Tsuchiya, M., 1987, The Western Equatorial Pacific Ocean Circulation Study: Nature, v. 330, p. 533-537.
    Lo, L., Lin, Y., Lee, M., Wei, K., Shen, C., Mii, H., 2008, Changes in vertical hydrological profile at the southern margin of the Western Pacific Warm Pool (WPWP) during the past 168,000 years: Eos Trans. AGU, 89(53), Fall Meet. Suppl., Abstract PP23C-1495.
    Loubere, P., and Bennett, S., 2008, Southern Ocean biogeochemical impact on the tropical ocean: Stable isotope records from the Pacific for the past 25,000 years: Global and Planetary Change, v. 63, p. 333-340.
    Loubere, P., and Fariduddin, M., 2008, Tropical Pacific-Atlantic climate-driven switching of thermocline nutrient content and export production: Global Biogeochem. Cycles, v. 22, , GB3026, doi:10.1029/2007GB003117.
    Loubere, P., Richaud, M., and Mireles, S., 2007, Variability in tropical thermocline nutrient chemistry on the glacial/interglacial timescale: Deep Sea Research Part II: Topical Studies in Oceanography, v. 54, p. 747-761.
    Loubere, P, 2002, Remote vs. local control of changes in eastern equatorial Pacific bioproductivity from the Last Glacial Maximum to the Present, Global Planet. Change, v. 35, p. 113-126.
    Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, and H. E. Garcia, 2006. World Ocean Atlas 2005, Volume 1: Temperature. S. Levitus, Ed. NOAA Atlas NESDIS 61, U.S. Government Printing Office, Washington, D.C., p. 182.
    Lukas, R., John, H.S., Karl, K.T., and Steve, A.T., 2001, Pacific Ocean Equatorial Currents, Encyclopedia of Ocean Sciences: Oxford, Academic Press, p. 2069-2076.
    Martinez, J.I., De Deckker, P., and Chivas, A.R., 1997. New estimates for salinity changes in the Western Pacific Warm Pool during the Last Glacial Maximum: oxygen-isotope evidence. Mar. Micropaleontol., v. 32, p. 311- 340.
    McGregor, H.V., Gagan, M.K., McCulloch, M.T., Hodge, E., and Mortimer, G., 2008, Mid-Holocene variability in the marine 14C reservoir age for northern coastal Papua New Guinea: Quaternary Geochronology, v. 3, p. 213-225.
    Monnin, E., Indermuhle, A., Dallenbach, A., Fluckiger, J., Stauffer, B., Stocker, T.F., Raynaud, D., and Barnola, J.-M., 2001, Atmospheric CO2 Concentrations over the Last Glacial Termination: Science, v. 291, p. 112-114.
    Ortiz, J.D., Mix, A.C., Rugh, W., Watkins, J.M., and Collier, R.W., 1996, Deep-dwelling planktonic foraminifera of the northeastern Pacific Ocean reveal environmental control of oxygen and carbon isotopic disequilibria: Geochimica et Cosmochimica Acta, v. 60, p. 4509-4523.
    Palmer, T., and Mansfield, D., 1984, Response of two atmospheric general circulation models to sea surface temperature anomalies in the tropical east and west Pacific, Nature, v.310, p.483- 485.
    Palmer, M.R., and Pearson, P.N., 2003, A 23,000-Year Record of Surface Water pH and PCO2 in the Western Equatorial Pacific Ocean: Science, v. 300, p. 480-482.
    Pena, L.D., Cacho, I., Ferretti, P., and Hall, M.A., 2008, El Niño - Southern Oscillation -like variability during glacial terminations and interlatitudinal teleconnections: Paleoceanography, v. 23, PA3101, doi:10.1029/2008PA001620.
    Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., Pepin, L., Ritz, C., Saltzman, E., and Stievenard, M., 1999, Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica: Nature, v. 399, p. 429-436.
    Pépin, L., Raynaud, D., Barnola, J.M., and Loutre, M.F., 2001, Hemispheric roles of climate forcings during glacialinterglacial transitions as deduced from the Vostok record and LLN-2D model experiments: J. Geophys. Res., v. 106, p. 885-892.
    Pierrehumbert, R. T. (2000), Climate change and the tropical Pacific: The sleeping dragon wakes, Proceedings of the National Academy of Sciences, v. 97, 1355-1358.
    Picaut, J., Ioualalen, M., Menkes, C., Delcroix, T., and McPhaden, M.J., 1996, Mechanism of the Zonal Displacements of the Pacific Warm Pool: Implications for ENSO: Science, v. 274, p. 1486-1489.
    Ravelo, A.C., and Fairbanks, R.G., 1995, Carbon isotopic fractionation in multiple species of planktonic foraminifera from core-tops in the tropical Atlantic: Journal of Foraminiferal Research, v. 25, p. 53-74.
    Prahl, F. G., and S. G. Wakeham (1987), Calibration of unsaturation patterns in long-chain ketone compositions for paleotemperature assessment, Nature, v. 330, p. 367 - 369, doi:10.1038/330367a0.
    Rosenthal, Y., Oppo, D.W., and Linsley, B.K., 2003, The amplitude and phasing of climate change during the last deglaciation in the Sulu Sea, western equatorial Pacific: Geophys. Res. Lett., v. 30, 1428, doi:10.1029/2002GL016612.
    Sato, K., Oda, M., Chiyonobu, S., Kimoto, K., Domitsu, H., and Ingle Jr, J.C., 2008, Establishment of the western Pacific warm pool during the Pliocene: Evidence from planktic foraminifera, oxygen isotopes, and Mg/Ca ratios: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 265, p. 140-147.
    Shackleton, N.J., Hall, M.A., Line, J., and Shuxi, C., 1983, Carbon isotope data in core V19-30 confirm reduced carbon dioxide concentration in the ice age atmosphere: Nature, v. 306, p. 319-322.
    Schiffelbein, P., and Berger, W.H., 1996, (Table A2) Stable oxygen isotope ratio of Globigerinoides sacculifer from sediment core ERDC-093P, PANGAEA.
    Sloyan, B.M., and Rintoul, S.R., 2001, Circulation, Renewal, and Modification of Antarctic Mode and Intermediate Water: Journal of Physical Oceanography, v. 31, p. 1005-1030.
    Spero, H.J., and Parker, S.L., 1985, Photosynthesis in the symbiotic planktonic foraminifer Orbulina universa, and its potential contribution to oceanic primary productivity: Journal of Foraminiferal Research, v. 15, p. 273-281.
    Spero, H.J., Lerche, I., and Williams, D.F., 1991, Opening the Carbon Isotope "Vital Effect" Black Box, 2, Quantitative Model for Interpreting Foraminiferal Carbon Isotope Data: Paleoceanography, v. 6, p. 639–655.
    Spero, H.J., and Lea, D.W., 2002, The Cause of Carbon Isotope Minimum Events on Glacial Terminations: Science, v. 296, p. 522-525.
    Spero, H.J., Mielke, K.M., Kalve, E.M., Lea, D.W., and Pak, D.K., 2003, Multispecies approach to reconstructing eastern equatorial Pacific thermocline hydrography during the past 360 kyr: Paleoceanography, v. 18, 1022, doi: 10.1029/2002PA000814.
    Steinke, S., Chiu, H.-Y., Yu, P.-S., Shen, C.-C., Löwemark, L., Mii, H.-S., and Chen, M.-T., 2005, Mg/Ca ratios of two Globigerinoides ruber (white) morphotypes: Implications for reconstructing past tropical/subtropical surface water conditions: Geochem. Geophys. Geosyst., v. 6, Q11005, doi:10.1029/2005GC000926.
    Stott, L., Poulsen, C., Lund, S., and Thunell, R., 2002, Super ENSO and global climate oscillations at millennial time scales, Science, v. 297, p.222- 226.
    Stott, L., Timmermann, A., and Thunell, R., 2007, Southern Hemisphere and Deep-Sea Warming Led Deglacial Atmospheric CO2 Rise and Tropical Warming: Science, v. 318, p. 435-438.
    Stuiver, M and Braziunas T F, 1993. Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon, v. 35 , p.137-189.
    Stuiver, M., Reimer, P.J., Reimer, R.W., 2005. CALIB 5.0 (WWWprogram and documentation). /http://radiocarbon.pa.qub.ac.uk/calib/S.
    Takahashi, T., Sutherland, S.C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., Bates, N., Wanninkhof, R., Feely, R.A., Sabine, C., Olafsson, J., and Nojiri, Y., 2002, Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects: Deep Sea Research Part II: Topical Studies in Oceanography, v. 49, p. 1601-1622.
    Tachikawa, K., Vidal, L., Sonzogni, C., and Bard, E., 2009, Glacial/interglacial sea surface temperature changes in the Southwest Pacific ocean over the past 360 ka: Quaternary Science Reviews, v. 28, p. 1160-1170.
    Toggweiler, J.R., Russell, J.L., and Carson, S.R., 2006, Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages: Paleoceanography, v. 21, PA2005, doi:10.1029/2005PA001154.
    Toggweiler, J.R., 1999, Variation of Atmospheric CO2 by Ventilation of the Ocean's Deepest Water: Paleoceanography, v. 14, p. 571-588.
    Toggweiler, J.R., Carson, S., 1995. What are upwelling ecosystems contributing to the ocean’s carbon and nutrient budgets? In: Summerhayes, C.P., Emeis, K.-C., Angel, M.V., Smith, R.L., Zeitschel, B. (Eds.), Upwelling in the Ocean, Modern Processes and Ancient Records. Wiley, New York, pp. 337-361.
    Toggweiler, J. R., Dixon, K., and Broecker, W. S., 1991. The Peru Upwelling and the Ventilation of the South-Pacific Thermocline, J. Geophys. Res.-Oceans, v. 96,p. 20467–20497.
    Tsuchiya, M., 1991. Flow path ofthe Antarctic intermediate water in the western equatorial South Pacific Ocean. Deep- Sea Research , v 38, p 273-279.
    Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J.C., McManus, J.F., Lambeck, K., Balbon, E., and Labracherie, M., 2002, Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records: Quaternary Science Reviews, v. 21, p. 295-305.
    Waelbroeck, C., Mulitza, S., Spero, H., Dokken, T., Kiefer, T., and Cortijo, E., 2005, A global compilation of late Holocene planktonic foraminiferal 18O: relationship between surface water temperature and 18O: Quaternary Science Reviews, v. 24, p. 853-868.
    Wara, M.W., Ravelo, A.C., and Delaney, M.L., 2005, Permanent El Niño-Like Conditions During the Pliocene Warm Period: Science, v. 309, p. 758-761.
    Watkins, J.M., Mix, A.C., and Wilson, J., 1996, Living planktic foraminifera: tracers of circulation and productivity regimes in the central equatorial Pacific: Deep Sea Research Part II: Topical Studies in Oceanography, v. 43, p. 1257-1282.
    Webster, P. J. and T. N. Palmer, 1997: The past and future of El Niño. Nature, v 390, p. 562-564.
    Yan, X.-H., Ho, C.-R., Zheng, Q., and Klemas, V., 1992, Temperature and Size Variabilities of the Western Pacific Warm Pool: Science, v. 258, p. 1643-1645.
    Yamasaki M., S.A., Oda M., Domitsu H. , 2008, Western equatorial Pacific planktic foraminiferal fluxes and assemblages during a La Niña year (1999), Marine Micropaleontology, v. 66, p. 304–319.

    下載圖示
    QR CODE