研究生: |
陳宜君 Yi-Chun Chen |
---|---|
論文名稱: |
利用全頻譜與掃描微探顯微術研究微波材料的介電機制 Study on Dielectric Mechanisms of Microwave Materials by Using Full-Band Spectroscopy and Scanning Probe Microscopy |
指導教授: |
鄭秀鳳
Cheng, Hsiu-Fung 林諭男 Lin, I-Nan |
學位類別: |
博士 Doctor |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 英文 |
論文頁數: | 210 |
中文關鍵詞: | 微波介電陶瓷 、傅力葉轉換紅外光譜 、全頻譜量測 、掃描探針顯微術 、介電機制 |
英文關鍵詞: | Microwave dielectrics, FTIR, Full-band spectroscopy, Scanning Probe Microscopy, Dielectric Mechanism |
論文種類: | 學術論文 |
相關次數: | 點閱:229 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究報告主要是利用全頻段介電譜及微波近場顯微鏡來研究微波介電材料之本質(intrinsic)及非本質(extrinsic)的介電機制。主要研究的材料是高介電常數的Bi1.5Zn1.0Nb1.5O7及高品質因子的Ba(Mg1/3Ta2/3)O3介電陶瓷,研究的目的是探討造成微波介電材料高介電常數或高品質因子的本質機制。
全頻譜介電特性量測中,所包含的頻段有: 低頻(1 kHz-3 MHz),微波頻段(~GHz),次毫米波段(THz),紅外光頻段,以及可見光頻段。將詳細探討各頻段中主要的極化機制,以及不同頻段極化機制的關聯性。
在Bi1.5Zn1.0Nb1.5O7 陶瓷的立方黃綠石(cubic pyrochlore)結構A2B2O6O’1中, A及 O’ 原子平衡位置無序的分佈(displasive disorder)對微波頻段及低頻段的介電特性有很大的影響。A位置大部分被極化率高的鉍離子(Bi3+)所佔, 而無序的A, O’分佈也加強離子極化的強度,因此A-O 及 A-O’ 相關的晶體振盪模式對離子極化有很強的介電貢獻,但又由於無序的結構造成A-O 及 A-O’ 相關的晶體振盪模式具有極大的振盪阻尼,也因此造成Bi1.5Zn1.0Nb1.5O7 材料在微波頻段有相較於其他微波材料高的介電常數及介電損失。相較於高介電常數的Bi1.5Zn1.0Nb1.5O7陶瓷, 高品質因子的 Ba(Mg1/3Ta2/3)O3介電陶瓷本質機制則稍有不同,其主要的介電貢獻則是來自鈣鈦礦結構 (perovskite)中鍵結較為緊密的B”O6 氧化物的八面體。結果顯示微波介電常數與氧化物八面體緊密程度有關,而微波頻段的品質因子則與氧化物八面體的扭曲變形程度有關。
在非本質機制的研究上,微波近場顯微探針掃描所得的影像清楚顯示在微波介電特性較差的陶瓷通常含有低介電常數及低品質因子的二次相。此外, 結合掃描式顯微拉曼(Micro Raman)光譜,可觀察到八面體扭曲的晶粒存在,此種八面體扭曲的晶粒及二次相可視為陶瓷中主要的非本質損失來源。
In this study, full-band dielectric spectroscopy and microwave evanescent microscopy were used to study the intrinsic and extrinsic dielectric mechanism of microwave dielectric materials. Bi1.5Zn1.0Nb1.5O7 and Ba(Mg1/3Ta2/3)O3 ceramics are investigated to reveal the mechanisms for high dielectric constant and high quality factor, respectively. The studied spectrum regimes include: low-frequency band (1 kHz-3 MHz), microwave frequencies (~GHz), submillimeter wave (THz) band, infrared frequency band, and optical (visible light) band. The dominant polarization mechanisms in each band are studied, and the correlation between these mechanisms is discussed.
Displasive disorders are found in both the A and O’-sites of Bi1.5Zn1.0Nb1.5O7 pyrochlore structure, A2B2O6O’1, which have significant influences on the dielectric properties of the materials at microwave (~GHz) and lower frequency (1 kHz-3 MHz) bands. The highly polarizable A-site ions, Bi3+, and the asymmetries at A- and O’-sites cause prominant dielectric contributions from A-O and A-O’ related modes, resulting in high dielectric constants at microwave frequencies. Large damping coefficients of these modes also lead to high dielectric losses. In contrast, the displacement disorders mechanism is not operating for high-Q Ba(Mg1/3Ta2/3)O3 ceramics and the dominant dielectric mechanism for theses materials is the polarization of rigid B”O6 octahedra in the complex perovskite structure A(B’1/3B”2/3)O3. Microwave dielectric constants are influenced by the rigidity of the three-dimensional oxygen-octahedron network, while the microwave quality factors, Q×f values, are related to the distortion of B”O6 oxygen octahedron.
In the study of extrinsic mechanism, EMP images reveal that samples with inferior dielectric properties usually contain large proportion of low-K and low-Q secondary phase. Moreover, scanning Raman spectroscopy reveals the presence of grains with distorted crystal structure. These defects degrade the macroscopic dielectric properties, and are the main extrinsic mechanisms modifying ceramic properties.
1. B. Meng, B. D. B. Klein, J. H. Booske and R. F. Cooper, “Microwave absorption in insulating dielectric ionic crystals including the role of point defects”, Phys. Rev. B 53(19), 12777—12785 (1996).
2. Y. Kim, J. Oh, T.-G. Kim and B. Park, “Effect of microstructures on the microwave dielectric properties of ZrTiO4 thin films”, Appl. Phys. Lett. 78(16), 2363—2365 (2001).
3. I. Webman, J. Jortner and M. H. Cohen, “Theory of optical and microwave properties of microscopically inhomogeneous materials”, Phys. Rev. B 15, 5712—5723 (1977).
4. M. P. McNeal, S.-J. Jang and R. E. Newnham, “The effect of grain and particle size on the microwave properties of barium titanate (BaTiO3)”, J. Appl. Phys. 83(6), 3288—3297 (1998).
5. L. J. Sinnamon, J. McAneney, R. M. Bowman and J. M. Gregg, “Dependence of the interfacial on measurement regime used for investigation of thin ferroelectric capacitors”, J. Appl. Phys. 93(1), 736—744 (2003).
6. E. Cockayne and B. P. Burton, “Phonons and static dielectric constant in CaTiO3 from first principles”, Phys. Rev. B 62, 3735—3743 (2000).
7. J. Petzelt, S. Kamba, G. V. Kozlov and A. A. Volkov, “Dielectric properties of microwave ceramics investigated by infrared and submillimeter spectroscopy”, Ferroelectrics 176, 145—165 (1996).
8. J. Petzelt, S. Pačesová, J. Fousek, S. Kamba, V. Železný, V. Koukal, J. Schwarzbach, B. P.Gorshunov, G. V. Kozlov and A. A. Volkov, “Dielectric spectra of some ceramics for microwave applications in the range of 1010—1014 Hz”, Ferroelectrics 93, 77—85 (1989).
9. J. Petzelt and N. Setter, “Far infrared spectroscopy and origin of microwave losses in low-loss ceramics”, Ferroelectrics 150, 89—102 (1993).
10. S. Kamba, V. Bovtun, J, Petzelt, I. Rychetsky, R. Mizaras, A. Brilingas, J. Banys, J. Grigas and M. Kosec, “Dielectric dispersion of the relaxor PLZT ceramics in the frequency range 20 Hz—100 THz”, J. Phys.: Condens. Matter 12, 497—519 (2000).
11. K. Wakamura and T. Arai, “Empirical relationship between effective ionic charges and optical dielectric constants in binary and ternary cubic compounds”, Phys. Rev. B 24, 7371—7379 (1981).
12. R. Zurmühlen, E. Colla, D. C. Dube, J. Petzelt, I. Reaney, A. Bell and N. Setter, “Structure of Ba(Y+3 1/2Ta+5 1/2)O3 and its dielectric properties in the range 102—1014 Hz, 20—600 K”, J. Appl. Phys. 76(10), 5864—5873 (1994).
13. I. Gregora, J. Petzelt, J. Pokorný, V. Vorlíček, Z. Zikmund, R. Zurmühlen and N. Setter, “Raman spectroscopy of the zone centre improper ferroelastic transition in ordered Ba(Y1/2Ta1/2)O3 complex perovskite ceramic”, Solid State Commun. 94, 899—903 (1995).
14. I. M. Reaney, J. Petzelt, V. V. Voltsekhovskii, F. Chu and N. Setter, “B-site order and infrared reflectivity in A(B´B˝)O3 complex perovskite ceramics”, J. Appl. Phys. 76(4), 2086—2092 (1994).
15. W. G. Spitzer, R. C. Miller, D. A. Kleinman and L. E. Howarth, “Far infrared dielectric dispersion in BaTiO3, SrTiO3, and TiO2”, Phys. Rev. 126, 1710—1721 (1962).
16. K. Wakino, M. Murata and H. Tamura, “Far infrared reflection spectra of Ba(Zn,Ta)O3-BaZrO3 dielectric resonator material”, J. Am. Ceram. Soc. 69(1), 34—37 (1986).
17. S. Kamba, G. Schaack and J. Petzelt, “Vibrational spectroscopy and soft-mode behavior in Rochelle salt”, Phys. Rev. B 51(21), 14998—15007 (1995).
18. P. Zurmühlen, J. Petzelt, S. Kamba, V. V. Voltsekhovskii, E. Colla and N. Setter, “Dielectric spectroscopy of Ba(B΄ 1/2B˝ 1/2)O3 complex perovskite ceramics: Correlations between ionic parameters and microwave dielectric properties”, J. Appl. Phys. 77(10), 5341—5350 (1995).
19. A. K. Tagantsev, J. Petzelt and N. Setter, “Relation between intrinsic microwave and submillimeter losses and permittivity in dielectrics”, Solid State Commun. 87, 1117—1120 (1993).
20. S. Kamba, J. Petzelt, E. Buixaderas, D. Haubrich, P. Vanĕk, P. Kužel, I. N. Jawahar, M. T. Sebastian and P. Mohanan, “High frequency dielectric properties of A5B4O15 microwave ceramics”, J. Appl. Phys. 89(7), 3900—3906 (2001).
21. Y. Hu and C.-L.Huang, “Structure and dielectric properties of bismuth-based dielectric ceramics”, Mater. Chem. Phys. 72, 60—65 (2001).
22. V. M. Ferreira, J. L. Baptista, J. Petzelt, G. A. Komandin and V. V. Voitsekhovskii, “Loss spectra of pure and La-doped MgTiO3 microwave ceramics”, J. Mater. Res. 10, 2301—2305 (1995).
23. J. Petzelt, E. Buixaderas, G. Komandin, A. V. Pronin, M. Valant and D. Suvorov, “Infrared dielectric response of the La2/3TiO3-LaAlO3 microwave ceramics system”, Mater. Sci. Eng. B57, 40—45 (1998).
24. J. Petzelt, E. Buixaderas and A. V. Pronin, “Infrared dielectric response of ordered and disordered ferroelectric Pb(Sc1/2Ta1/2)O3 ceramics”, Mater. Sci. Eng. B55, 86—94 (1998).
25. J. Petzelt, S. Kamba and I. Gregora, “Infrared and raman spectroscopy of ill-ordered crystals”, Phase Transitions 63, 107—145 (1997).
26. P. Zurmühlen, J. Petzelt, S. Kamba, G. Kozlov, A. Volkov, B. Gorahunov, D. Dube and N. Setter, “Dielectric spectroscopy of Ba(B΄ 1/2B˝ 1/2)O3 complex perovskite ceramics: Correlations between ionic parameters and microwave dielectric properties. II. Studies below the phonon eigenfrequencies (102—1012 Hz)”, J. Appl. Phys. 77(10), 5351—5364 (1995).
27. A. Lahrech, R. Bachelot, P. Gleyzes, and A. C. Boccara, “Infrared Near-Field Imaging of Implanted Semiconductors: Evidence of A Pure Dielectric Contrast”, Appl. Phys. Lett. 71, 575—577 (1997).
28. Y. Lu, T. Wei, F. Duewer, Y. Lu, N. B. Ming, P. G. Schultz, and X. D. Xiang, “High Spatial Resolution Quantitative Microwave Impedance Microscopy by A scanning Tip Microwave Near-Field Microscope” Science, 276, 2004—2006, (1997).
29. G. Chen, T. Wei, F. Duewer, Y. Lu, and X. D. Xiang, “High Spatial Resolution Quantitative Microwave Impedance Microscopy By A Scanning Tip Microwave Near-Field Microscope.” Appl. Phys. Lett. 71, 1872—1874 (1997).
30. C. Gao, F. Duewer, and X. D. Xiang, “Quantitative Microwave Evanscent Microscopy.” Appl. Phys. Lett. 75, 3005—3007 (1999).
31. T. Wei, X. D. Xiang, W. G. Wallace-Freedman and P. G. Schultz, “Scanning Tip Microwave Near-Field Microscope”, App. Phys. Lett. 68, 3506—3508 (1996).
32. I. Takeuchi, T. Wei, F. Duewer, Y. K. Yoo, X. D. Xiang, V. Talyansky, S. P. Pai, G. J. Chen, and T. Venkatesan, “Low Temperature Scanning-Tip Microwave Near-Field Microscopy of YBCO Films”, Appl. Phys. Lett. 71, 2026—2028 (1997).
33. H. Chang, C. Gao, I. Takeuchi, Y. yoo, J. Wang, P. G. Schultz, X. D. Wang, R. P. Sharama, M. Downes, and T. Venkatesan, “Combinatorial Synthesis and High Throughput Evaluation of Ferroelectric/Dielectric Thin-Film Libraries for Microwave Applications” Appl. Phys. Lett. 72, 2185—2187 (1998).
34. C. Gao, F. Duewer, Y. Lu, and X. D. Xiang, “Quantitative Nonlinear Dielectric Microscopy of Periodically Polarized Ferroelectric Domains” Appl. Phys. Lett. 73, 1146—1148 (1998).
35. F. Duewer, C. Gao, and X. D. Xiang, “Tip-Sample Distance Feedback Control in A Scanning Evanescent Microwave Probe for Nonlinear Dielectric Imaging” Rev. Sci. Ins. 71, 2414—2417 (2000).
36. C. Gao and X. D. Xiang, Quantitative Microwave Near-Field Microscopy of Dielectric Properties. Rev. Sci. Ins. 69, 3846—3851 (1998).
37. A. V. Hipple, Dielectrics and waves, 2nd ed., Atrech House, London, 1-86 (1996).
38. G. Burns, Solid state physics, Academic press, Florida, 450-486(1985).
39. K. J. Button, “Microwave Ferrite Devices: The First Ten Years”, IEEE Trans. Microw. Theo. Tech. MTT-32, 1088 (1984).
40. M. E. Hines, “The Virtues of Nonlinearity-Detection, Frequency Conversion, Parametric Amplification and Harmonic Generation”, IEEE Trans. Microw. Theo. Tech. MTT-32, 1097 (1984).
41. J. F. White, “Origins of High-Power Diode Switching,” IEEE Trans. Microw. Theo. Tech. MTT-32, 1105 (1984).
42. P. Greiling “The Historical Development of GaAs FET Digital IC Technology”, IEEE Trans. Microw. Theo. Tech. MTT-32, 1144 (1984).
43. D. N. McQuiddy, Jr., J. W. Wassel, J. B. Lagrange, and W. R. Wisseman, “Monolithic Microwave Integrated Circuits: A Historical Perspective”, IEEE Trans. Microw. Theo. Tech. MTT-32, 997 (1984).
44. D. M. Pozar, Microwave Engineering, John Wiley & Sons, INC., New York, 330-383, 715, (1990).
45. J. H. Sohn, “Microwave Dielectric Characteristics of Ilmenite-Type Titanates”, Jpn. J. Appl. Phys. 133, 5466 (1994).
46. S. B. Desu and H. M. O’Bryan, “Microwave loss quality of BaZn1/3Ta2/3O3 ceramics”, J. Am. Ceram. Soc. 68(10), 546—551 (1985).
47. S. Nomura, K. Toyama, and K. Kaneta, “Ba(Mg1/3Ta2/3)O3 Ceramics with Temperature Stable High Dielectric Constant and Low Microwave Loss”, Jpn. J. Appl. Phys. Part 2 21, L624 (1982).
48. R. Guo, A. S. Shalla, and L. E. Cross, “Ba(Mg1/3Ta2/3)O3 Single Crystal Fiber Grown by the Laser Heated Pedestal Growth Technique”, J. Appl. Phys. 75, p. 4704 (1994).
49. S. G. Chen, “Microwave Dielectric Properties of Doped BaTi4O9”, J. Am. Ceram. So. 78(8), p.1894 (1991).
50. G. H. Jonker and W. Kwestroo, “The Ternary Systems BaO-TiO2-SnO2 and BaO-TiO2-ZrO2”, J. Am. Ceram. Soc. 41(10), 390 (1958).
51. H. M. O’Bryan, “Phase Equilibrium in the TiO2-Rich Region of the System BaO-TiO2”, J. Am. Ceram. Soc. 57(12), 522 (1974).
52. R. Chirtoffersen, “Effect of Sn Substitution on Cation Ordering in Zr1-xSnxTiO4 Microwave Dielectric Ceramics”, J. Am. Ceram. Soc. 77(6), p. 1441 (1994).
53. K. Wakino, “Microwave Characteristics of (Zr,Sn)TiO4 and BaO-PbO- Nb2O3-TiO2 Dielectric Resonators”, J. Am. Ceram. Soc. 67(4), 278 (1984).
54. A. Yamada, “The Effect of Mn Addition on Dielectric Properities and Microstructure of BaO-Nd2O3-TiO2 Ceramics”, Jpn. J. Appl. Phys. 30, 2350 (1991).
55. Donhang Liu and Xi Yao, “Phase Structure and Dielectric Properties of Bi2O3-ZnO-Nb2O5 based Dielectric Ceramics”, J. Am. Ceram. Soc. 76(8), 2129 (1974).
56. M. F. Yan, and H. C Ling, “Low Sintering Temperature, High Dielectric Constant and Small Temperature Coefficient Dielectric Compositions”, Mater. Chem. Phys., 44, 37 (1996).
57. Hsiu-Fung Cheng, Yi-Chun Chen, Luu-Gen Hwa, Petr Kužel, Jan Petzelt, and I-Nan Lin, “Full Spectrum Dielectric Response of Bi2(Zn1/3Nb2/3)2O7 Thin Films in Terahertz, Infrared and Optical Frequency Regions”, Mater. Chem. Phys. 79, 161—163 (2003).
58. Hsiu-Fung Cheng, Yi-Chun Chen and I-Nan Lin, “Frequency Response of Microwave Dielectric Bi2(Zn1/3Nb2/3)2O7 Thin Films Laser Deposited on Indium-Tin Oxide Coated Glass”, J. Appl. Phys. 87(1), 479—483 (2000).
59. H. C. Ling, M. F. Yan, and W. W. Rhodes, “High Dielectric Constant and Small Temperature Coefficient Bismuth-Based Dielectric Compositions”, J. Mater. Res. 5, 1752 (1990).
60. J. C. Nino, M. T. Lanagan, and C. A. Randall, “Dielectric relaxation in Bi2O3-ZnO-Nb2O5 cubic pyrochlore”, J. Appl. Phys. 89, 4512—4516 (2001).
61. I. Levin, T. G. Amos, J. C. Nino, T. A. Vanderah, C. A. Randall, and M. T. Lanagan, “Structural study of an unusual cubic pyrochlore Bi1.5Zn0.92Nb1.5O6.92”, J. Solid State Chem. 168, 69—75 (2002).
62. J. C. Nino, M. T. Lanagan, and C. A. Randall, and D. Kamba, “Correlation between infrared phonon modes and dielectric relaxation in Bi2O3-ZnO-Nb2O5 cubic pyrochlore”, Appl. Phys. Lett. 81, 4404—4406 (2002).
63. W. Ren, S. T. Mckinstry, C. A. Randall, and Tomas R. Shrout, “Bismuth zinc niobate pyrochlore dielectric thin films for capacitive applications”, J. Appl. Phys. 89, 767—774 (2001).
64. S. Kamaba, V. Porokhonskyy, A. Pashkin, V. Bovtum, J. Petzelt, J. C. Nino, S. T. Mckinstry, M. T. Lanagan, and C. A. Randall, “Anomalous broad dielectric relaxation in Bi1.5Zn1.0Nb1.5O7”, Phys. Rev. B 66, 0541061—0541068 (2002).
65. F. S. Galasso, Structure, Properties and Preparation of Perovskite-Type Compounds, Pergamon, Oxford, 13—15, 55 (1969).
66. H. Tamura, D. A. Sagala, and K. Wakino, “Lattice Vibrations of Ba(Zn1/3Ta2/3)O3 Crystal with Ordered Perovskite Structure”, Jpn. J. Appl. Phys. Part 1 25, 787 (1986).
67. I. G. Siny, R. W. Tao, R. S. Katiyar, R. A. Guo, and A. S. Bhalla, “Raman Spectroscopy of Mg-Ta Order-Disorder in BaMg1/3Ta2/3O3”, J. Phys. Chem. Solids 59, p. 181 (1998).
68. C. T. Chia, Y. C. Chen, H. F. Cheng, and I. N. Lin, “Correlation of Microwave Dielectric Properties and Spectroscopy of Ba(Mg⅓Ta⅔)O3-Ba(Mg⅓Nb⅔)O3 Ceramics: I. Raman”, J. Appl. Phys (In press) (2002).
69. H. Tamura, D. A. Sagala, and K. Wakino, “Infrared Reflection of Ba(Mg1/3Ta2/3)O3 Ceramics”, J. Am. Ceram. Soc. 76, p. 2433 (1993).
70. K. Tochi and N. Takeuchi, “Lattice Vibration modes of (1-x)Ba(Zn1/3Ta2/3)O3 -xBaZrO3”, J. Mater. Sci. Lett. 8, p. 1144 (1989).
71. T. Nagai, M. Sugiyama, M. Sando, and K. Nihara, “Anomaly in the Infrared Active Phonon Modes and Its Relationship to the Dielectric Constant”, Jpn. J. Appl. Phys. Part 1 35, p. 5163 (1996).
72. K. Tochi and N. Takeuchi, “Far-Infrared Reflection sSpectra of Ba(Mn1/3Ta2/3)O3 Sintered in Nitrogen and in Air”, J. Mater. Sci. Lett. 7, p. 1080 (1988).
73. K. Tochi, N. Takeuchi, S. Emura, “Two-Mode Behavior in Complex Perovskite Materials”, J. Am. Ceram. Soc. 72, p. 158 (1989).
74. M. Sugiyama and T. Nagai, “Anomaly of Dielectric Constant of (Ba1-xSrx)(Mg1/3Ta2/3)O3 Solid Solution and Its Rrelarion to Structural Change”, Jpn. J. Appl. Phys. Part 1 32, p. 4360 (1993).
75. Yi-Chun Chen, Hsiu-Fung Cheng, and I-Nan Lin, “Electrical and Optical Properties of Microwave Dielectric Thin Films Prepared by Pulsed Laser Deposition”, Integrated Ferroelectrics 32, 33—43 (2001).
76. B.W. Hakki and P. D. Coleman, “A dielectric resonator method of measuring inductive capacities in the millimeter range”, IEEE Trans. Microw. Theo. Tech. MTT-8, 402—410 (1960).
77. S. B. Cohn and K. C. Kelly, “Microwave measurement of high dielectric constant materials”, IEEE Trans. Microw. Theo. Tech. MTT-14, 406—410 (1966).
78. W. E. Courtney, “Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators”, IEEE Trans. Microw. Theo. Tech. MTT-18, 476—485 (1970).
79. Y. Kobayashi and S. Tanaka, “Resonant modes of a dielectric rod resonator short-circuited at both ends by parallel conducting plates”, IEEE Trans. Microw. Theo. Tech. MTT-28, 1077—1085 (1980).
80. Y. Kobayashi and M. Katoh, “Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method”, IEEE Trans. Microw. Theo. Tech. MTT-33, 586—592 (1980).
81. Y. Kobayashi et al, “Influence of Conductor shields on the Q-Factors of a TE0nl Dielectric Resonator”, IEEE Trans. Microw. Theo. Tech. MTT-33, 1361—1366 (1985).
82. D. Kajfez, “Incremental Frequency Rule for Computing the Q-factor of a shielded TE0np Dielectric Resonator”, IEEE Trans. Microw. Theo. Tech. MTT-32, 941—943 (1984).
83. K. Leong, J. Mazierska, and Jerzy Krupka, “Measurements of Unloaded Q-Factor of Transmission Mode Dielectric Resonators”, IEEE MTT-S Digest, TH3F-38, 1639-1642 (1997).
84. D. Kajfez, Dielectric Resonators, 2nd edition, Nobel Publishing Corporation, Georgia, 327—376 (1998).
85. Yi-Chun Chen, Hsiu-Fung Cheng and I-Nan Lin, “Optical and Electrical Properties of Microwave Dielectric Thin Films”, Jpn. J. Appl. Phys. 39(1), 475—477 (2000).
86. Yi-Chun Chen, Hsiu-Fung Cheng, You-Ming Tsau, Petr Kužel, Jan Petzelt and I-Nan Lin, “Synthesis and Properties of Dielectric Bi2(Zn1/3Nb2/3)2O7 Thin Films”, J. European Ceram. Soc. 21, 2731—2734 (2001).
87. Hsiu-Fung Cheng, Yi-Chun Chen, You-Ming Tsau, Petr Kužel, Jan Petzelt, and I-Nan Lin, “Dielectric Properties of Bi2(Zn1/3Nb2/3)O7 Electroceramics and Thin Films”, J. European Ceram. Soc. 21, 1605—1608 (2001).
88. Yi-Chun Chen, Hsiang-Lin Liu, Hsiu-Fung Cheng and I-Nan Lin, “Characterization of Microwave Dielectric Properties of Bi2(Zn1/3Nb2/3)2O7 Thin Films Measured by Fourier Transform Infrared Spectroscopy”, J. European Ceram. Soc. 21, 1711—1714 (2001)
89. Hsiu-Fung Cheng, Yi-Chun Chen, H. L. Liu, L. G. Hwa, I. N. Lin, P. Kuzel and J. Petzelt, “Terahertz and Infrared Spectroscopic Study on Dielectric Properties of Bi2(Zn1/3Nb2/3)2O7 for Microwave Application”, Ferroelectrics 272, 2247—2252 (2002).
90. D. P. Cann, C. A. Randall and T. R. Shrout, “Invenstigation on the Dielectric Properties of Bismuth Pyrochlores”, Solid State Commun. 100, 529—534 (1996).
91. B. Mihailova, S. Stoyanov, V. gaydarov, M. Gospodinov, and L. Konstantinov, “Raman Spectroscopy Study of Pyrochlore Pb2Sc0.5Ta1.5O6.5 crystals”, Solid State Commun. 103, 623—627 (1997).
92. R. A. McCauley, “Infrared-absorption characteristics of the pyrochlore structure”, J. Opt. Soc. Am. 63, 721-725 (1973).
93. J. F. Scott, “Raman spectra and lattice dynamics of a-Berlinite (AlPO4)”, Phys. Rev. B 4, 1360−1366 (1971).
94. K. Wakamura and T. Arai, “Empirical relationship between effective charges and optical dielectric constants in binary and ternary cubic compounds”, Phys. Rev. B 24, 7371−7379 (1981).
95. P. Lawaetz, “Effective charges and ionicity”, Phys. Rev. Lett. 26, 697−700 (1971).
96. Yi-Chun Chen, Hsiu-Fung Cheng, Hsiang-Lin Liu, Chih-Ta Chia, and I-Nan Lin, “Correlation of microwave dielectric properties and normal vibration modes of xBa(Mg⅓Ta⅔)O3 -(1-x)Ba(Mg⅓Nb⅔)O3 ceramics: II. infrared spectroscopy”, J. Appl. Phys., (in press) (2003).
97. Chih-Ta Chia, Yi-Chun Chen, Hsiu-Fung Cheng, and I-Nan Lin, “Correlation of microwave dielectric properties and normal vibration modes of xBa(Mg⅓Ta⅔)O3 -(1-x)Ba(Mg⅓Nb⅔)O3 creramics: I. Raman spectroscopy”, J. Appl. Phys., (in press) (2003).
98. A. S. Barker, Jr., and M. Tinham, “Far-infrared ferroelectric vibration mode in SrTiO3”, Phy. Rev. 125, 1527−1530 (1962).
99. A. C. Larson and R. B. Von Dreele, “General structure analysis system”, Los Alamos National Laboratory Report LAUR, 86−748, (1994).
100. Yi-Chun Chen, Hsiu-Fung Cheng, Gang Wang, Xiao-Dong Xiang, Chien-Ming Lei and I-Nan Lin, “Measurement of dielectric property by evanescent microwave microscope”, Jpn. J. Appl. Phy. 41, 7214−7217 (2002).
101. Hsiu-Fung Cheng, Yi-Chun Chen, Gang Wang, Xiao-Dong Xiang, Guan-Yu Chen, Kuo-Shung Liu, and I-Nan Lin, “Study of second-phase effects in Ba(Mg1/3Ta2/3)O3 materials by microwave near-field microscopy”, J. European Ceram. Soc. JECS 4282, (in press), (2003).
102. Yi-Chun Chen, Hsiu-Fung Cheng, Gang Wang, Xiao-Dong Xiang, Yi-Chen Chiang, Kuo Shung Liu and I-Nan Lin, “Microwave dielectric imaging of Ba2Ti9O20 materials with a scanning-tip microwave near-field microscope”, J. Euro. Cera. Soc. JECS 4283, (in press), (2003).
103. J. H. Lee, S. Hyun, and K. Char, “Quantitative analysis of scanning microwave microscopy on dielectric thin film by finite element calculation”, Rev. Sci. Instrum. 72, 1425−1434 (2001).