簡易檢索 / 詳目顯示

研究生: 許志豪
Chih-Hao Hsu
論文名稱: 植基於類神經網路之自走車室內環境辨識系統
Indoor Environment Recognition System Using Robot with Neural Network
指導教授: 曾煥雯
Tzeng, Huan-Wen
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 78
中文關鍵詞: 類神經網路環境特徵超音波感測器電子羅盤
英文關鍵詞: mobile robot, compass, ultrasound sensor, unknown environment
論文種類: 學術論文
相關次數: 點閱:77下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前智慧型自走車已經被廣泛的使用在各領域中,為了提高人類的居家生活品質,用來輔助人類生活的智慧型自走車也漸漸的開發出來,本論文提出使用類神經網路進行室內環境辨識及導航的工作,自走車使用超音波感測器和電子羅盤來取得環境中的距離和方向,當感測器取得環境的幾何特徵,相關資訊匯入類神經網路進行環境特徵辨識,接著會輸出七種環境基本類型。

    環境規劃出2種不同寬度的路口大小,尺寸分別為40公分和60公分2種,接著分別收集資料進行環境辨識工作。根據類神經網路辨識結果可以發現不可辨識之區域,這些地方稱為失敗區域。性能指標提出了信賴度、準確度及有效性來做系統評估。

    Nowadays, the mobile robot has been introduced and used widely in many fields. To increase the quality of human life, the intelligent mobile robot has been developed gradually and exercised in order to assist people in their living spaces. The following paper will demonstrate the processes of environmental recognition and navigation by using the neural network into the mobile robot. Moreover, it is significant to build an ultrasound sensor and the electrical compass in a gear to obtain the distance and the direction from the consequence of activities.
    There are two different types are described, which are the global and the local navigations. The global navigation is distinct by adapting the routing cost function into the progress, which is aimed to work out the route optimization to follow. However, the local navigation is focused on the exploration in the unknown environment by using the neural network in result of environmental recognition. Thus, the combination of two steps is going to allow the mobile robot to move smoothly and randomly in the indoor areas.

    謝  誌 I 中文摘要 II 英文摘要 III 目  錄 IV 頁次 IV 圖 目 錄 VII 表 目 錄 X 第一章  緒論 1 1.1 研究背景與動機 1 1.2 研究目的 1 1.3 研究方法 2 1.4 研究限制 3 1.5 研究步驟 3 第二章  文獻探討與回顧 5 2.1 相關研究 6 2.2 距離感測器 8 2.2.1 超音波感測原理 8 2.2.2 超音波檢測方式 10 2.2.3 超音波物理原理 12 2.3 電子羅盤 13 2.4 電子羅盤校正 15 2.4.1 磁圓心漂離效應 15 2.4.2 磁偏角效應 16 2.4.3 磁偏角誤差修正 17 2.5 類神經網路 18 2.5.1 類神經網路發展 18 2.5.2 類神經網路的學習規則 19 第三章  系統架構設計 21 3.1 環境辨識系統 21 3.1.1 倒傳遞類神經網路架構 21 3.1.2 環境編碼 24 3.1.3 類神經網路演算法 24 3.2 類神經網路學習過程 25 3.3 自走車運動模式 27 3.4 自走車導航 29 3.4.1 減速控制 30 3.4.2 巡邊探索法則 31 3.5 轉向方式 32 3.6 巡邊轉向控制 33 第四章 實驗系統 35 4.1 軟硬體環境 35 4.1.1 控制系統 37 4.1.2 感測系統 38 第五章 實驗及結果分析 41 5.1 評估方法 41 5.2 實驗環境 42 5.3 類神經網路學習結果 45 5.3.1 40公分結果分析 45 5.3.2 60公分結果分析 55 5.4 研究討論 65 5.4.1 40公分路口分析與討論 65 5.4.2 60公分路口信賴度分析 67 5.5 辨識失敗區間 68 5.5.1 40公分辨識失敗區 69 5.5.2 60公分辨識失敗區 70 第六章 結論與未來研究 73 6.1 結論 73 6.2 後續研究 74 參考文獻 75 作者簡介 78

    [1] M. hamel, Rejean J. G. fontaine and P. Boissy, “In-home telerehabilitation for geriatric patients”, IEEE Engineering in Medicine and Biology Magazine, August 2008, pp. 29 - 37.
    [2] A. Treptow, G. Clieniak and T. Duckett, “Active people recognition using thermal and grey images on a mobile security robot”, IEEE/RSJ International Conference on Intelligent Robots and Systems, August 2005, pp. 2103 - 2108.
    [3] S. Li Tzuu-Hseng, C. Shih-Jie and C. Yi-Xiang, “Implementation of human-like driving skills by autonomous fuzzy behavior control on an FPGA-based car-like mobile robot”, IEEE Transactions on Industrial Electronics, Vol. 50, No. 5, pp. 867 - 880, October 2003.
    [4] http://www.roomba.com.tw/product/530.html, June 2010.
    [5] 韓國Yujin 機器人製造公司,http://www.irobibiz.com/, June 2010.
    [6] http://www.plasticpals.com/?cat=1167, June 2010.
    [7] S. Enxiu, G. Junjie, Y. Huang and L. Zhang, “Simulation and kinematics analysis of composite turning for the omni-direction AGV”, IEEE International Conference on Industrial Technology, April 2008, pp. 1 - 5.
    [8] J. Ploeg, V. D. Knaap, and D.J. Verburg, “ATS/AGV design implementation and evaluation of a high performance AGV”, IEEE Conferences on Intelligent Vehicle Symposium, June 2002, pp. 127 - 134.
    [9] Y. Zhang and L. Yuan; “Application of fuzzy neural networks in data fusion for mobile robot wall-following”, The 7th World Congress on Intelligent Control and Automation, June 2008, pp 6580 - 6583.
    [10] P. Rusu, E. M Petriu, T. E. Whalen, A. Cornell and H. J. W. Spoelder, “Behavior-based neural-fuzzy controller for mobile robot navigation”, IEEE Transactions on Instrumentation and Measurement, Vol. 2, May 2002, pp.1617 -1622.
    [11] A. Ferreira, F. Garcia Pereira, T. Freire Bastos-Filho, M. Sarcinelli-Filho and R. Carelli, “Avoiding obstacles in mobile robot navigation: implementing the tangential escape approach”, IEEE International Symposium on Industrial Electronics, Vol. 4, July 2006, pp. 2732 - 2737.
    [12] H. Yoshitaka and K. Hirohiko, “Mobile robot localization and mapping by scan matching using laser reflection intensity of the sokuiki sensor”, IEEE Conference on Industrial Electronics, November 2006, pp.305 - 8573.
    [13] D. Silver, D. Morales, I. Rekleitis, B. Lisien and H. Choset, “ Arc carving: obtaining accurate, low latency maps from ultrasonic range sensors”, IEEE Conference on International Robotics and Automation, April 2004, pp. 1554 - 1561
    [14] L. Kleeman and R. Kuc, “Sonar sensing ” Handbook of Robotics, B. Siciliano and O. Khatib, Eds. New York: Springer-Verlag, 2008
    [15] P. McKerrow and S. M. Zhu, “Modelling multiple reflection paths in ultrasonic sensing”, International Conference on Intelligent Robots and Systems, November 1996 pp. 284 - 291.
    [16] D. Bank and T. Kampke, “High-resolution ultrasonic environment imaging”, IEEE Transactions Robotics and Automation Society, Vol. 23, No. 2, pp. 370 - 381, April 2007.
    [17] H. Woong-Gie, B. Seung-Min and K. Tae-Yong, “Genetic algorithm based path planning and dynamic obstacle avoidance of mobile robots”, IEEE International Conference on Computational Cybernetics and Simulation, October 1997,pp. 2747 - 2751
    [18] M. Montaner and A. Serrano, “Fuzzy knowledge-based controller design for autonomous robot navigation”, Expert Systems with Applications, Vol. 14, No. 1, pp. 179 - 186, January 1998.
    [19] R. Chatterjee and F. Matsuno, “Use of single side reflex for automomous navigation of mobile robots in unknown environment”, Robotics and Autonomous Systems, Vol 12, Issues 3-4, April 1994, pp. 143 - 153.
    [20] K. Maki, “Real Time Mapping and Dynamic Navigation for Mobile Robots”, International Journal of Advanced Robotic Systems, Vol. 4, No. 3, 2007, pp. 323 - 338.
    [21] J. Rico, A. Ismael, G. Juan and E. F. Camacho, “Mobile robot path tracking using a robust PID controller”, Control Engineering Practice, Vol. 9, No. 11, pp. 1209 - 1214, 2001.
    [22] S. Zalzala and A. S. Morris, “Neural Networks for Robotic Control: Theory and applications”, Computing and Control Engineering Journal, Vol.7, Issue 5 October 1996.
    [23] J. Badcock, J. A. Dun, K. jay, L. Kleeman and R. A. Jarvis, “An autonomous robot navigation system-integrating environmental mapping, path planning, localization and motion control”, Robotica Journal, Vol. 11, pp. 97 - 103, November 1993.
    [24] J. Antonio, F. Madrigal and J. Gonzalez, “Multihierarchical Graph Search”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24 Issue 1, pp. 103 - 113, 2002.
    [25] K. Maki, Habib “Real Time mapping and dynamic navigation for mobile robots” International Journal of Advanced Robotic Systems, Vol. 4, No. 3, pp. 323 - 338, 2007
    [26] M. Harb, R. Abielmona, E. Petriu and K. Naji, “Neural control system of a mobile robot”, IEEE World Congress on Computational Intelligence,pp. 2825 - 2832, June 2008
    [27] S. Al-Allan, “Environment recognition and reactive navigation of an autonomous mobile robot using neural networks”, University of EVRY, France, Ph.D. Thesis, 1996.
    [28] W. Kao and C. Tsai, “Adaptive and learning calibration of magnetic compass ”, Journal of Measurement Science and Mathematics and Computation, Vol. 17, Number 11, pp. 3073 - 3082, 2006.
    [29] J. Latombe, “Robot motion planning”, Kluwer Academic Publisher, Boston, 1991.
    [30] J. Alexander and J. H. Maddocks, “On the kinematics of wheeled mobile robot,” Intl. J. Robotzcs Research, Vol. 8, No. 5, pp. 15 - 27, 1989.

    下載圖示
    QR CODE