研究生: |
簡仕奕 Shih-Yi Chien |
---|---|
論文名稱: |
垂直轉移矽奈米線陣列及其熱傳導係數量測技術開發研究 Development of vertical transfer technology and measuring method of thermal conductivity for silicon nanowire arrays |
指導教授: |
程金保
Cheng, Chin-Pao |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 93 |
中文關鍵詞: | 矽奈米線陣列 、垂直轉移 、熱傳導係數 、金屬輔助無電蝕刻 |
英文關鍵詞: | silicon nanowire arrays, vertical transfer, thermal conductivity, metal-assisted electroless etching |
論文種類: | 學術論文 |
相關次數: | 點閱:241 下載:15 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用金屬輔助無電蝕刻的方式製作大面積、低成本且長度為200 m以上之矽奈米線陣列,其蝕刻時間為1小時50分鐘,其蝕刻溶液為氫氟酸HF [6M]和硝酸銀AgNO3 [0.026M]。為了能將此矽奈米線陣列應用於熱電元件,本研究以鉻薄膜當蝕刻終止層,利用前述條件在薄化的矽晶圓上蝕刻出矽奈米線,再填入聚合物做支撐,來發展出矽奈米線陣列垂直轉移與圖案化技術。
熱傳導性質為熱電元件重要性質之一,本研究以前述方法製作出矽奈米線陣列結構,再設計一方法量測其熱傳導係數,並配合模擬分析驗證量測數據之準確性。本研究首先建立單一矽奈米線模型,藉助ANSYS Icepak 14.0電腦軟體與傅立葉熱傳定律,模擬計算出單一矽奈米線模型的xy方向和z方向熱傳導係數。接著利用軸流法量測出聚合物之熱傳導係數以及矽與聚合物的界面熱阻。再利用Icepak模擬矽奈米線陣列模型,並搭配平行線法所衍生出的三線式金屬線結構,經過模擬與量測結果互相比對,最後得出本研究製備之矽奈米線陣列結構之熱傳導係數為90 ~ 120 之間,證實矽奈米線陣列的熱傳導係數低於矽塊材。
Fabrication of silicon nanowire arrays was presented by utilizing metal-assisted electroless etching in this study.Large-area and low cost silicon nanowire arrays with a length above 200 m was fabricated in an aqueous solution of AgNO3 (0.026 M) and HF (6M) for 110 minutes. Thinned silicon wafer has been etched to obtain nanowires array, and then filling in polymer to support the structure of nanowires. To develop a vertical transfer and patterned technology of silicon nanowires arrays and apply it in thermoelectric device, a method utilizing Cr thin film as stop-etching layer to terminate the etching process has been adapted in this study.
Silicon nanowires structure has been prepared according to above process, and an innovative method was designed to measure its thermal conductivity, which is the one of important properties of thermoelectric device. Furthermore, simulation analysis by software was used to verify the accuracy of measuring data. To build a single silicon nanowire model to measure the thermal conductivity of silicon nanowire arrays, ANSYS Icepak 14.0 software and Fourier’s law of thermal conduction have been utilized in this study. The results of xy and z direction of thermal conductivity of single silicon nanowire model were simulated and calculated. Next, we utilized axial heat flow method to measure the thermal conductivity of polymer and the interface thermal resistance of Si/polymer. Finally, a sample of silicon nanowires array with three metal wires has been made to simulate and measure the thermal conductivity of silicon nanowires structure, which is about 90 ~ 120 . This result confirms that the thermal conductivity of silicon nanowire arrays is lower than silicon bulk’s.
1. G. J. Lee, H. M. Lee, C. K. Rhee, Bismuth nano-powder electrode for trace analysis of heavy metalsusing anodic stripping voltammetry, Electrochemistry Communications, Vol. 9, 2514-2518, 2007.
2. B. M. Maune, M. G. Borselli, B. Huang, T. D. Ladd, P. W. Deelman, K. S. Holabird, A. A. Kiselev, I. Alvarado-Rodriguez, R. S. Ross, A. E. Schmitz, M. Sokolich, C. A.Watson, M. F. Gyure, A. T. Hunter, Coherent singlet-triplet oscillations in a silicon-based double quantum dot, Nature, Vol. 481, 344-347, 2012.
3. L. J. Bie, X. N. Yan, J. Yin, Y. Q. Duan, Z. H. Yuan, Nanopillar ZnO gas sensor for hydrogen and ethanol, Sensors and Actuators B, Vol. 126, 604-608, 2007.
4. C. W. Kuo, J. Y. Shiu, Y. H. Cho, P. Chen, Fabrication of large-area periodic nanopillar arrays for nanoimprint lithography using polymer colloid masks, Adv. Mater., Vol. 15, No. 13, 1065-1608, 2003.
5. L. Liao, Y. C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, X. Duan, High-speed graphene transistors with a self-aligned nanowire gate, Nature, Vol. 467, No. 16, 305-308, 2010.
6. L. Hu , L. Wu , M. Liao , X. Fang, High-performance NiCo 2O4 nanofilm photodetectors fabricated by an interfacial self-assembly strategy, Adv. Mater., Vol. 23, 1988-1992, 2011.
7. M. Zaremba-Tymieniecki, C. Li, K. Fobelets, Z. A. K. Durrani, Field-effect transistors using silicon nanowires prepared by electroless chemical etching, IEEE Electron Device Letters, Vol. 31, No. 8, 860-862, 2010.
8. V. Schmidt, H. Riel, S. Senz, S. Karg, W. Riess, U. Gcsele, Realization of a silicon nanowire vertical surround-gate field-effect transistor, Small, Vol. 2, No. 1, 85-88, 2006.
9. X. P. A. Gao, G. Zheng, C. M. Lieber, Subthreshold regime has the optimal sensitivity for nanowire FET biosensors, Nano Lett., Vol. 10, 547-552, 2010.
10. S. Perraud, S. Poncet, S. Noel, M. Levis, P. Faucherand, E. Rouviere, P. Thony, C. Jaussaud, R. Delsol, Full process for integrating silicon nanowire arrays into solar cells, Solar Energy Materials and Solar Cells, Vol. 93, 1568-1571, 2009.
11. E.Garnett, P. Yang, Light trapping in silicon nanowire solar cells, Nano Lett., Vol. 10, 1082-1087, 2010.
12. K. Peng, X. Wang, S. T. Lee, Silicon nanowire array photoelectrochemical solar cells, Applied Physics Letters, Vol. 92, 163103, 2008.
13. J. Bae, H. Kim, X. M. Zhang, C. H Dang, Yue Zhang, Y. J. Choi, A. Nurmikko, Z. L. Wang, Si nanowire metal-insulator-semiconductor photodetectors as efficient light harvesters, Nanotechnology, Vol. 21, 095502, 2010.
14. T. Markussen, A. P. Jauho, M. Brandbyge, Electron and phonon transport in silicon nanowires: an atomistic approach to thermoelectric properties, Phys. Rev. B, Vol. 79, 035415, 2009.
15. Y. Cui, Q. Wei, H. Park, C. M. Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species, Science, Vol. 293, No. 17, 1289-1292, 2001.
16. J. C. Chan, H. Tran, J. W. Pattison, S. B. Rananavare, Facile pyrolytic synthesis of silicon nanowires, Solid-State Electronics, Vol. 54, 1185-1191, 2010.
17. C. K. Chan, H. Peng, G. LIU, K. Mcilwrath, X. F. Zhang, R. A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires, Nature Nanotechnology, Vol. 3, 31-35, 2008.
18. S. C. Shiu, S. C. Hung, J. J. Chao, C. F. Lin, Massive transfer of vertically aligned Si nanowire array onto alien substrates and their characteristics, Applied Surface Science, Vol. 255, 8566-8570, 2009.
19. 簡恆傑,微奈米尺度薄膜之熱傳導量測方法,國立清華大學工程與系統科學所,博士論文,2010。
20. M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, D. B. Turner-Evans, J. M. Spurgeon, E. L. Warren, R. M. Briggs, N. S. Lewis, H. A. Atwater, Si microwire-array solar cells, Energy Environ. Sci., Vol. 3, 1037-1041, 2010.
21. S. Sharma, T. I. Kamins, R. S. Williams, Diameter control of Ti-catalyzed silicon nanowires, Journal of Crystal Growth, Vol. 267, 613-618, 2004.
22. A. Reguer, H. Dallaporta, Growth study of silicon nanowires by electron microscopies, Materials Science in Semiconductor Processing, Vol. 12, 44-51, 2009.
23. I. Lombardi, A. I. Hochbaum, P. Yang, C. Carraro, R. Maboudian, Synthesis of High Density, Size-controlled Si nanowire arrays via porous anodic alumina mask, Chem. Mater., Vol. 18, 988-991, 2006.
24. O. Gunawan, S. Guha, Characteristics of vapor-liquid-solid grown silicon nanowire solar cells, Solar Energy Materials and Solar Cells, Vol. 93, 1388-1393, 2009.
25. 薛丁仁、林修毅,以氣液固法製作矽奈米線太陽能電池,國家奈米元件實驗室,2010。
26. F. Bai, M. Li, R. Huang, D. Song, B. Jiang, Y. Li, Template-free fabrication of silicon micropillar/nanowire composite structure by one-step etching, Nanoscale Research Letters, Vol. 7, 557, 2012.
27. Z. Huang , N. Geyer , P. Werner , J. d. Boor , U. Gösele, Metal-assisted chemical etching of silicon: a review, Adv. Mater., Vol. 23, 285-308, 2011.
28. M. L. Zhang, K. Q. Peng, X. Fan, J. S. Jie, R. Q. Zhang, S. T. Lee, N. B. Wong, Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching, J. Phys. Chem. C, Vol. 112, 4444-4450, 2008.
29. R. S. Wagner and W. C. Ellis, Vapor-liquid-solid mechanism of single crystal growth, Applied Physics Letters, Vol. 4, No. 5, 89-90, 1964.
30. D.P. Yu, Y.J. Xing, Q.L. Hang, H.F. Yan, J. Xu, Z.H. Xi, S.Q. Feng, Controlled growth of oriented amorphous silicon nanowires via a solid-liquid-solid (SLS) mechanism, Physica E, Vol. 9, 305-309, 2001.
31. K. Peng, H. Fang, J. Hu, Y. Wu, J. Zhu, Y. Yan, S. Lee, Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution, Chem. Eur. J., Vol. 12, 7942-7947, 2006.
32. T. Qiu, X. L. Wu, G. G. Siu, and P. K. Chu, Intergrowth Mechanism of Silicon Nanowires and Silver Dendrites, Journal of Electronic Materials, Vol. 35, No. 10, 1879-1884, 2006.
33. Z. Huang, T. Shimizu, S. Senz, Z. Zhang, N. Geyer, and U. Go¨sele, Oxidation rate effect on the direction of metal-assisted chemical and electrochemical etching of silicon, J. Phys. Chem. C, Vol. 114, 10683-10690, 2010.
34. Z. P. Huang, N. Geyer, L. F. Liu, M. Y. Li, and P. Zhong, Metal-assisted electrochemical etching of silicon, Nanotechnology, Vol. 21, 465301, 2010.
35. K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with satalytic metal particles, Adv. Funct. Mater., Vol. 16, 387-394, 2006.
36. W. Chern, K. Hsu, I. S. Chun, B. P. d. Azeredo, N. Ahmed, K. H. Kim, J. M. Zuo, N. Fang, P. Ferreira, and X. Li, Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays, Nano Lett., Vol. 10, 1582-1588, 2010.
37. Z. Huang, X. Zhang, M. Reiche, L. Liu, W. Lee, T. Shimizu, S. Senz, and U. Go¨ sele, Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching, Nano Lett., Vol. 8, No. 9, 3046-3051, 2008.
38. Z. Huang, T. Shimizu, S. Senz, Z. Zhang, X. Zhang, W. Lee, N. Geyer, and Ulrich Go¨ sele, Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred <100> etching directions, Nano Lett., Vol. 9, No. 7, 2519-2525, 2009.
39. Z. Huang, H. Fang, and J. Zhu, Fabrication of silicon nanowire arrays with controlled diameter, length, and density, Adv. Mater., Vol. 19, 744-748, 2007.
40. H. C. Chen, C. C. Lin, H. W. Han, Y. L. Tsai, C. H. Chang, H. W. Wang, M. A Tsai, H. C. Kuo, and Peichen Yu, Enhanced efficiency for c-Si solar cell with nanopillar array via quantum dots layers, Optics Express A, Vol. 19, No. S5 1141-1147, 2011.
41. C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching, Applied Physics Letters, Vol. 93, 113109, 2008.
42. A. Agarwal, K. Buddharaju, I. K. Lao, N. Singh, N. Balasubramanian, D. L. Kwong, Silicon nanowire sensor array using top–down CMOS technology, Sensors and Actuators A, Vol. 145-146, 207-213, 2008.
43. K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, Multicolored vertical silicon nanowires, Nano Lett., Vol. 11, 1851-1856, 2011.
44. J. M. Weisse, D. R. Kim, C. H. Lee, and X. Zheng, Vertical transfer of uniform silicon nanowire arrays via crack formation, Nano Lett., Vol. 11, 1300-1305, 2011.
45. J. S. Huang, C. Y. Hsiao, S. J. Syu, J. J. Chao, C. F. Lin, Well-aligned single-crystalline silicon nanowire hybrid solar cells on glass, Solar Energy Materials & Solar Cells, Vol. 93, 621-624, 2009.
46. M. V. Vedernikov and E. K. Jordanishvili, A. F. Ioffe and origin of modern semiconductor thermoelectric energy conversion, IEEE, 17th International Conference on Thermoelectrics, 1998
47. H. J. Goldsmid, B. Sc., and R.W. Douglas, B. Sc., F.S.G T., F Inst. P., Research Laboratories, The use of semiconductors in thermoelectric refrigeration, Br. J. Appl. Phys., Vol. 5, 386-390, 1954.
48. 朱旭山,熱電材料與元件之發展與應用,工業材料雜誌,220期,93-103,2005。
49. 劉君愷,熱電技術發展現況,世界材料網,http://www.materialsnet.com.tw.
50. R. Venkatasubramanian, E. Siivola, T. Colpitts and B. O'Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, Vol. 413, 597-602, 2001.
51. T. C. Harman, P. J. Taylor, M. P. Walsh, B. E. LaForge, Quantum dot superlattice thermoelectric materials and devices, Science, Vol. 297, 2229-2232, 2002.
52. A. Majumdar, Thermoelectricity in Semiconductor Nanostructures, Science, Vol. 303, 777-778, 2004.
53. M. Strasser, R. Aigner, M. Franosch, G. Wachutka, Miniaturized thermoelectric generators based on poly-Si and poly-SiGe surface micromachining, Sensors and Actuators A, Vol. 97-98, 535-542, 2002.
54. A. L. Bassi, A. Bailini, C. S. Casari, F. Donati, A. Mantegazza, Thermoelectric properties of Bi–Te films with controlled structure and morphology, J. Appl. Phys., Vol. 105, 124307, 2009.
55. L. H. Liang, and B. Li, Size-dependent thermal conductivity of nanoscale semiconducting systems, Physical Review B, Vol. 73, 15303, 2006.
56. A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. Yu, W. A. Goddard III, J. R. Heath, Silicon nanowires as efficient thermoelectric materials, Nature, Vol. 451, 168-171, 2008.
57. L. Weber and E. Gmelin, Transport Properties of Silicon, Appl. Phys. A, Vol. 53, 136-140, 1991.
58. A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, P. Yang, Enhanced thermoelectric performance of rough silicon nanowires, Nature, Vol. 451, 163-167, 2008.
59. D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, A. Majumdar, Thermal conductivity of individual silicon nanowires, Appl. Phys. Lett., Vol. 83, No. 14, 2934-2936, 2003.
60. T. T. M. Vo, A. J. Williamson, V. Lordi, and G. Galli, Atomistic design of thermoelectric properties of silicon nanowires, Nano Lett., Vol. 8, No. 4, 1111-1114, 2008.
61. N. Yang, G. Zhang, and B. Li, Ultralow thermal conductivity of isotope-doped silicon nanowires, Nano Lett., Vol. 8, No. 1, 276-280, 2008.
62. L. Shi, D. Yao, G. Zhang, B. Li, Size dependent thermoelectric properties of silicon nanowires, Appl. Phys. Lett., Vol. 95, 063102, 2009.
63. Y. Li, K. Buddharaju, N. Singh, G. Q. Lo, and S. J. Lee, Chip-level thermoelectric power generators based on high-density silicon nanowire array prepared with top-down CMOS technology, IEEE Electron Device Letters, Vol. 32, No. 5, 674-676, 2011.
64. C. Y. Chen, D. H. Phan, C. C. Wong,T. J. Yen, Vertically-aligned of sub-millimeter ultralong Si nanowire arrays and its reduced phonon thermal conductivity, Journal of The Electrochemical Society, Vol. 158, D302-D306, 2011.
65. Z. Wang, Z. Ni, R. Zhao,M. Chen, K. Bi, Y. Chen, The effect of surface roughness on lattice thermal conductivity of silicon nanowires, Physica, Vol. B, No. 406, 2515-2520, 2011.
66. Cahill, David G., Thermal conductivity measurement from 30 to 750 K: the 3ω method, Review of Scientific Instruments, Vol. 61, 802-808, 1990.
67. E. T. Swartz and R. O. Pohl, Thermal resistance at interfaces, Appl. Phys. Lett., Vol. 51, 2200-2202, 1987.
68. K. E. Goodson, M. I. Flik, L. T. Su et al., Prediction and measurement of the thermal conductivity of amorphous dielectric layers, J. Heat Transfer, Vol. 116, 317-324, 1994.
69. K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, and J. Zhu, Aligned single-crystalline Si nanowire arrays for photovoltaic applications, Small, Vol. 1, No. 11, 1062-1067, 2005.
70. 張峻豪,可撓式電致色變元件固態高分子電解質之研究,逢甲大學化學工程學所,碩士論文,2006。
71. J. Huang, S. Y. Chiam, H. H. Tan, S. Wang, and W. K. Chim, Fabrication of silicon nanowires with precise diameter control using metal nanodot arrays, Chem. Mater., Vol. 22, No. 13, 4111-4116, 2010.
72. H. C. Chien, D. J. Yao, C. T. Hsu, Measurement and evaluation of the interfacial thermal resistance between a metal and a dialectric, Appl. Phy. Lett., Vol. 93, 231910, 2008.
73. H. C. Chien, R. M. Tain, Thermal characteristics of a through glass via (TGV) structure, IMPACT, 2012