簡易檢索 / 詳目顯示

研究生: 許益維
論文名稱: 含胺取代之聯吡啶釕錯化合物在光誘導電子轉移反應中的影響
Photoinduced Electron Transfer of Ruthenium Complexes with Amino Substitude Bipyridine Ligands
指導教授: 張一知
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 108
中文關鍵詞: 聯吡啶釕錯化合物
英文關鍵詞: Ruthenium
論文種類: 學術論文
相關次數: 點閱:219下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究 [Ru(bpy)2(4,4’-dabpy)]2+ 和[Ru(bpy)2(5,5’-dabpy)]2+ 兩種位向配位基的釕金屬錯合物作為電子提供者的同異。合成出六種以不同胺基酸為橋基的衍生物,分別是[Ru(bpy)2(4,4’-dabpy-(gly-
    A)2)]2+、[Ru(bpy)2(4,4’-dabpy-(phe-A)2)]2+、[Ru(bpy)2(4,4’-dabpy-(ile-A)2
    )]2+、[Ru(bpy)2(4,4’-dabpy-(ile-A))]2+、[Ru(bpy)2(5,5’-dabpy-(phe-A)2
    )]2+、[Ru(bpy)2(5,5’-dabpy-(ile-A)2)]2+。

    利用冷光光譜的Quantum Yield及Time –Resulted luminescence decay的方式可測得電子轉移速率常數。[Ru(bpy)2(4,4’-dabpy-(gly-
    A)2)]2+、[Ru(bpy)2(4,4’-dabpy-(phe-A)2)]2+、[Ru(bpy)2(4,4’-dabpy-(ile-A)2
    )]2+ 的電子轉移速率常數分別是 3.2 x 106 、 1.1 x 107 、 1.5 x 107 s-1,[Ru(bpy)2(5,5’-dabpy-(phe-A)2)]2+、[Ru(bpy)2(5,5’-dabpy-(ile-A)2)]2+則是2.1 x 107 、 2.4 x107 s-1;我們發現,兩種電子提供者會因為取代基位向不同而有不同程度的電子提供能力,進而影響電子傳遞的效果。其中,[Ru(bpy)2(5,5’-dabpy)]2+ 的電子提供能力較好,其胺基酸衍生物的電子傳遞速率亦較快。

    在生命系統的電子轉移效應中,除了胺基酸的種類是ㄧ大關鍵外,取代基的位向亦扮演了重大的角色。

    A donor-bridge-acceptor system was designed to investing the electron transfer efficienty, where donors were Ru(bpy)2(4,4’-dabpy), and Ru(bpy)2(5,5’-dabpy), acceptor is 2,4-dinitrobezene, and the amino acids (glycine, phenylalanine, isoleuecine) were bridging molecules . Six complexes [Ru(bpy)2(4,4’-dabpy-(gly-A)2)]2+, [Ru(bpy)2(4,4’-dabpy-
    (phe-A)2)]2+, [Ru(bpy)2(4,4’-dabpy-(ile-A)2)]2+, [Ru(bpy)2(4,4’-dabpy-
    (ile-A))]2+,[Ru(bpy)2-(5,5’-dabpy-(phe-A)2)]2+, and [Ru(bpy)2(5,5’-dabpy-(ile-A)2)]2+ have been prepared.

    The electron transfer rate constants of [Ru(bpy)2(4,4’-dabpy-
    (gly-A)2)]2+, [Ru(bpy)2(4,4’-dabpy-(phe-A)2)]2+, and [Ru(bpy)2-
    (4,4’-dabpy-(ile-A)2)]2+ are 3.2 x 106, 1.1 x 107, and 1.5 x 107 s-1, respectively, and the electron transfer rate constants of [Ru(bpy)2-
    (5,5’-dabpy-(phe-A)2)]2+, [Ru(bpy)2(5,5’-dabpy-(ile-A)2)]2+ are 2.1 x 107 and 2.5 x 107 s-1, respectively. In the amino-acid series, isoluecine bridge gives the fastest electron transfer rate, followed by phenylalanine and glycine which is consist with the -donating abilities of the bridge molecules.

    The trend in the donor side showed the 5,5’-substituted amine bipyridine gives faster electron transfer rate, again, is consist with the electron donating ability of the donor. These results indicate the substitution position of ligand plays an important role for electron transfer in complexes.

    表目錄…………………………………………………………………Ⅲ 圖目錄…………………………………………………………………Ⅳ 中文摘要………………………………………………………………Ⅶ 英文摘要………………………………………………………………Ⅷ 第一章 緒論 第一節 聯吡啶釕錯合物的簡介……………………………………1 第二節 聯吡啶釕錯合物的應用……………………………………4 第三節 實驗起源與目的………………………….. ……………...10 第二章 實驗部份 第一節 一般實驗處理……………………………………………..12 第二節 儀器設備…………………………………………………..12 第三節 藥品………………………………………………………..15 第四節 配位基與縮寫代號………………………………………..18 第五節 錯化合物與縮寫代號….………………………………….20 第六節 合成………………………………………………………..21 第三章 結果與討論 第一節 合成.......................................38 第二節 UV-Vis吸收光譜………...….…………………………….40 第三節 冷光光譜…………………………..……………………....45 第四節 電化學……….…………………………………………….51 第五節 電子轉移現象……………………………………………..53 第四章 結論……………………………………………………….….61 參考文獻……………………………………………..………………...63 附圖…………………………………………………..………………...66

    1. Hager G. D.; Crosby G. A. J. Am. Chem. Soc. 1975, 97, 7031.

    2. Hipps K. W.; Crosby G. A. J. Am. Chem. Soc. 1975, 97, 7042.

    3. Houten J. V.; Watts R. J. J.Am. Chem. Soc. 1976, 98, 4853.

    4. Kober E. M.; Meyer T. J. Inorg. Chem. 1979, 18, 3177.

    5. Casper J.V.; Meyer T. J. J. Am Chem. Soc. 1983, 105, 5583.

    6. Juris A.; Balzani V. Coord. Chem. Rev. 1988, 84, 85.

    7. Kalyanasundaram K. Photochemistry of Polypyridine and Porphyrin
    Complexes, Academic Press, London, 1992.

    8. Gräzel M. Nature 2001, 414, 338.

    9. Polo A. S.; Itokazu M.K.; Iha, N. Y. M. Coord. Chem. Rev. 2004,
    248, 1343.

    10. Grazynski L. L.; Chemielewski P. J. J. Chem. Soc. Perkin Trans. 2
    1995, 503

    11. Barton J. K. ; Goldberg J. M. ; Kumar C. V.; Turro, N. J. J. Am.
    Chem. Soc. 1986, 108, 2081.

    12. Rehmann J. P.; Barton J. K. Biochemistry 1990, 29, 1701.

    13. Rehmann J. P.; Barton J. K. Biochemistry 1990, 29, 1710.

    14. Y. Jenkins and J. K. Barton J. Am. Chem. Soc. 1992, 114, 8736.

    15. L. S. Schulman S. H. Bossmann and N. J. Turro J. Phys. Chem.,
    1995, 99, 9283.

    16. C. Moucheron A. Kirsch-De Mesmaeker and S. Choua Inorg.
    Chem., 1997, 36, 584.

    17. Schäfer B.; Görls, H.; Presselt M.; Schmitt M.; Popp J.; Henry W.;
    Johannes G. Vos; Rau S. J. Chem. Soc., Dalton Trans. 2006, 18,
    2225.

    18. Brennaman M. K.; Alstrum-Acevedo J. H.; Fleming C. N.; Jang P.;
    Meyer T. J.; Papanikolas J. M. J. Am. Chem. Soc. 2002, 124, 15094.

    19. Friedman A. E.; Chambron J. C.; Sauvage J. P.; Turro N. J.; Barton
    J. K. J. Am. Chem. Soc. 1990, 112, 4960.

    20. Jenkins Y.; Friedman A. E.; Turro N. J.; Barton J. K. Biochemistry
    1992, 31, 10809.

    21. Turro C.; Bossmann S. H.; Jenkins Y.; Barton J. K.; Turro N. J.
    J. Am. Chem. Soc. 1995, 117, 9026.

    22. Sabatani E.; Nikol H. D.; Gray H. B.; Anson F. C. J. Am. Chem.
    Soc. 1996, 118, 1158.

    23. Maheswari P. U.; Rajendiran V.; Palaniandavar M.;
    Parthasarathi R.; Subramanian V. J. Inorg. Biochem. 2006, 100, 3.

    24. Liu X. W.; Li J.; Li H.; Zheng K. C.; Chao H.; Ji L. N. J.
    Inorg. Biochem. 2005, 99, 2372.

    25. Erkkila K. E.; Odom D. T.; Barton J. K. Chem. Rev. 1999, 99, 2777.

    26. Lerman L. S. J. Mol. Biol. 1961, 3, 18.

    27. Chang I. J.; Gary H. B.; Winkler J. R. J. Am. Chem. Soc. 1991, 113, 7056.

    28. Stemp E. D. A.; Arkin M. R.; Barton J. K. J. Am. Chem. Soc. 1997, 119, 2921.

    29. Winkler J. R.; Gary H. B. Chem. Rev. 1992, 92, 369.

    30. Tsai T.-C.; Chang I-J. J. Am. Chem. Soc. 1998, 120, 227.

    31. Mussell R. D.; Nocera D. G. J.Am. Chem. Soc. 1988, 110, 2764.

    32. 蔡東洲, 國立台灣師範大學化學研究所碩士論文, 1997年

    無法下載圖示 本全文未授權公開
    QR CODE