簡易檢索 / 詳目顯示

研究生: 林立心
LiHsin Lin
論文名稱: 碳六十固定化酵素電化學葡萄糖感測器研製與應用
Preparation and Application of Immobilized Fullerence-Enzyme Based electrochemical glucose Sensor
指導教授: 施正雄
Shih, Jeng-Shong
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 115
中文關鍵詞: 葡萄糖碳六十固定化酵素
英文關鍵詞: glucose, Immobilized Fullerence-Enzyme
論文種類: 學術論文
相關次數: 點閱:229下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用具混價性質之鈷赤血鹽和碳六十固定化酵素致被化學修飾電極來發展葡萄糖感測器,本實驗在0.1MKCl,pH6之磷酸鹽緩衝液中,施加電位0.0V(相對於Ag/AgCl參比電極)偵測葡萄糖,藉由含鈷赤血鹽對H2O2之催化能力,可將偵測電位降低至0.0V,且在還原模式下進行,此電位有效防止血液中電活性物質,如維生素C(Ascorbic acid),尿酸(Uric acid),乙醯基酚(Acetaminophen),半胱銨酸(Cysteine),酪銨酸(Tyrosine),半乳糖(Galactose)之干擾.H2O2氧化還原態的鈷赤血鹽而自身被還原,此還原電流和溶液中的葡萄糖濃度成正比關係.此碳六十固定化酵素感測器對葡萄糖具有不錯之線性範圍(8mM),快速的反應時間(5秒),以及不錯之靈敏度,其偵測極限可達1.6×10-6M,在20次連續操作下相對標準偏差維4.26%,使用100天後,訊號仍維持最初之80%,實驗顯示碳六十固定化酵素確實能增加訊號和延長感測器壽命.本研究也對此葡萄糖感測器探討了溫度,酸鹼度等效應.

    A mixed-valence cluster of cobalt(Ⅱ)hexacyanoferrate and fullerene-enzyme based electrochemical glucose sensor was developed.A water insoluble fullerene-glucose oxidase(C60-GOD)was synthesized and applied as an immobilized enzyme on a glassy carbon electrode with cobalt(Ⅱ)hexacyanoferrate for analysis of glucose.The glucose was measured in 0.1MKCl/phosphate buffer solution with a pH of 6.0 When the electrode potential was applied at 0.0mV(v.s Ag/AgCl reference electrode).The glucose sensor exhobited efficient electro-catalytic activity toward the liberated hydrogen peroxide and allowed cathodic detection of the glucose,with no interferences from easily oxidizable constitutes such as uric acid,ascorbic acid,cysteine,tyrosine,acetaminophen and glactose.The H2O2 oxidized the reduced cobalt(Ⅱ)hexacyanoferrate and was reduced itself,and the reduced current was proportional to the concentration of glucose in aqueous solutions.The immobilized C60-GOD based glucose sensor showed a good linear response up to 8mM and a quite short response time of 5 sec.The glucose sensor also exhibited good sensitivity with a detection limit of 1.6×10-6M and a high reproducibility with a relative standard deviation(RSD) of 4.26%.The signal decreased to 80% of the initial value after continuous operations for 100 days.The immobilized Fullerene/glucose oxidase obiously enhanced the response singal and extends the lifetime of the glucose enzyme sensor.Effects of pH and temperature on the responses of the immobilized C60-GOD based glucose sensor were also studied and discussed.

    目錄 中文摘要 Ⅰ 英文摘要 Ⅱ 目錄 Ⅲ 圖目錄 Ⅵ 表目錄 Ⅷ 第一章 緒論 1 1-1生化感測器 1 1-1-1生化感測器之定義 1 1-1-2辨識元之種類 2 1-1-3辦識元之固定法 4 1-2葡萄糖氧化酵素的介紹 10 1-2-1酵素化學 10 1-2-2酵素的發現史 10 1-2-3酵素的特異性或專一性(specificity) 11 1-2-4酵素的催化特性 12 1-2-5酵素之溫度效應 12 1-2-6酵素之pH值效應 14 1-2-7溶劑對酵素活性的影響 15 1-2-8固定化酵素(immobilized enzymes) 15 1-2-9固定化酵素的應用 24 1-3碳六十 29 1-3-1碳六十(C60)的發現 29 1-3-2碳六十性質 31 1-3-3碳六十的化學反應 34 1-3-4碳六十的有機化學反應 35 1-3-5碳六十的無機化學反應 36 1-3-6碳六十的應用 36 1-3-7碳六十在高溫超導的應用 37 1-3-8碳六十在藥物上的運用 38 1-4電化學生化感測器 38 1-4-1電化學生化感測器之定義 38 1-4-2一般電化學生化感測器種類) 39 1-5安培法葡萄糖生化感測器之偵測原理 39 1-6過渡金屬混價化合物 40 1-6-1簡介 40 1-6-2過渡金屬混價化合物之一般應用 43 1-6-3過渡金屬黃血鹽混價化合物在電化學之應用 43 第二章實驗部分 47 2-1儀器及藥品 47 2-2電極之製備 48 2-3操作條件之探討 52 2-3-1外加電位之探討 52 2-3-2攪拌速率之探討 52 2-3-3 pH值效應探討 52 2-3-4溫度效應探討 53 2-4反應時間及偵測範圍 53 2-4-1電極反應時間之探討 53 2-4-2電極偵測極限及glucose線性範圍之探討 53 2-4-3干擾物質對此系統之影響 54 2-4-4電極再現性之探討 54 2-5電極穩定性及壽命之探討 55 2-6自製碳電極 55 2-7系統示意圖 56 第三章 結果與討論 60 3-1碳六十-鈷赤血鹽修飾電極催化過氧化氫還原 60 3-1-1鈷赤血鹽之探討 60 3-1-2鈷赤血鹽催化能力之探討 62 3-1-3修飾方法及修飾物質之探討 66 3-1-4操作電位之探討 80 3-1-5攪拌速度之探討 82 3-1-6 pH及溫度之探討 82 3-1-7反應時間之探討 83 3-1-8 葡萄糖濃度線性範圍之探討 89 3-1-9干擾物質之影響 91 3-1-10再現性之探討 91 3-1-11電極穩定性及壽命之探討 99 3-2自製碳電極探討 99 第四章 結論 103

    參考資料
    1. Guilbault,G.G. and Sadar,M.H.,Accounts of Chemical Research. 1979,12,344.
    2.Clark,L.C.;Lyons,C.and Ann,N.Y.,Acad.Sci.1962,102,29.
    3.Updike,S.and Hicks,G.,Nature(London).1967,214,986.
    4.Olsson,B.;Lundback,H.;Jphansson,G.;Scheller,F.and Nentwig, J.,Anal.Chem.1986,58,1046.
    5.Takahiko Kaku,;Hiroko I.Karan and Yoshiyuki Okamoto,Anal.Chem. 1994,66,1231.
    6.Cespedes,F.;Martinez-Fabregas,E.and Alegret,S., Anal.Chem.Acta.1993,284,21.
    7.Hale,P.D.;Boguslavsky,L.I.;Inagaki,T.;Karan,H.I.;Lee,H.S.;Skotheim,Y.A.and Okamoto,Y.,Anal.Chem.1991,63,677.
    8.Sylvia,V.S.; Raymond,J.P.and Alexander,M.Y.,Anal.Chem. 1990,62,1111.
    9.Cleland,N.and Sven-OlofEnfors,Anal.Chem.1984,56,1880.
    10.Iannlello,R.M.and Yacynych,A.M.,Anal.Chem. 1981,53,2090
    11.Iannlello,R.M.;Lindsay,T.J.and Yacynych,A.M.,Anal.Chem. 1982,54,1098.
    12.Anthony E,G.C.;Graham,D.;Graeme,D.F.and Allen , H.O.Hill,Anal.Chem.1984,56,667.
    13.Gough,D.A.;Lucisano,J.Y.and Tse,P.H.S.,Anal.Chem. 1985,57,2351.
    14.Narasimhan,K.and Wingard,L.B.Jr.,Anal.Chem. 1986,58,2984.
    15.Wang,J.;Angnes,L.,Anal.Chem.1992,64,456.
    16.Wittstock,G.;Schuhmann,W.Formation and Imaging of Microscopic Enzymatically Active Spots on an Alkanethiolate-Covered Gold Electrode by Scanning Electrochemical Microscopy. Anal. Chem.1997, 69, 5059-5066.
    17.Bulmus,V.;Ayhan,H.;Piskin,E.Modified PMMA monosize microbeads for glucose oxidase immobilization. The Chemical Engineering Journal. 1997, 65, 71-76.
    18.Kang,E.T.;Neoh,K.G.;Huang.,S.W.;Lim,S.L.;Tan,K.L. Surface-Functionalized Polyaniline Films. J. Phys. Chem. B. 1997, 101, 10744-10750.
    19.Ukeda,H.;Fujita,Y.;Ohira,M.;Sawamura,M.Immobilized Enzyme-based Microtiter Plate Assay for Glucose in Foods. J. Agric. Food Chem. 1996, 44, 3858-3863.
    20.Turmanova,S.;Trifonov,A.;Kalaijiev,O.;Kostov,G. Radiation grafting of acrylic acid onto polytetrafluoroethylene films for glucose oxidase immobilization and its application in membrane biosensor. Journal of membrane Science. 1997, 127, 1-7.
    21.Alves Da Silva,M.Helena Gil,J.S.Redinha, Ana M. Oliveira Brett, J. L. Costa Pereira. Immobilization of glucose oxidase on Nylon Membranes and Its Application in a Flow-Through Glucose Reactor. Journal of Polymer Science :Part A: Polymer Chemistry. 1991, 29, 275-279.
    22.Audebert,P.;Demaille,C.Electrochemical Probing of the Activity of Glucose Oxidase Embedded Sol-Gel Matrices. Chem. Mater. 1993, 5, 911-913.
    23.Künzelmann,U.;Böttcher,H.Biosensor properties of glucose oxidase immobilized within SiO2 gels. Sensors and Actuators B. 1997, 38-39, 222-228.
    24.Higuchi,A.;Hara,M.;Yun,K.S.;Tak,T.M.Recognition of Substrates by Membrane Potential of Immobilized Glucose Oxidase Membranes. Journal of Applied Polymer Science. 1994, 51,1735-1739.
    25.Godjevargova,Ts.;Dimov,A.;Vassileva,N.Effects of chemical modifications and immobilization of glucose oxidase onto acrylonitrile copolymer membranes on membrance potential and membrance charge density Journal of Membrane Science. 1996 , 116, 273-278.
    26.Liu,B.;Hu,R;Deng,J.Fabrication of an Amperometric Biosensor Based on the Immobilization of Glucose oxidase in a modified Molecular Sieve Matrix. Analyst. 1997, 122, 821-826.
    27.呂鋒洲; 林仁混. 基礎酵素學. 1991.
    28.陳國誠. 微生物酵素工程學. 1989.
    29.Chang,H.C.;Chen,P.Y.;Cheng,A.J.Enzyme Immobilization and Polymer Material. Chemistry. 1994, 52, 237-243.
    30.陳治誠. 生化感測器技術簡介. 科儀新知. 1993, 15(2), 71-81.
    31.Bowers,Larry D. Application of immobilized biocatalysts in chemical analysis. Anal. Chem. 1986, 58(4), 513A, 514A, 516A, 518A, 520A, 522A, 524A, 526A, 528A, 530A.
    32.Herdan,J.M.;Balulescu,M.;Cira,O.Enantioselective hydrolysis of racemic esters using pig liver esterase. Journal of Molecular Catalysis A:Chemical. 1996, 107, 409-414.
    33.Spagna,G.;Pifferi,P.G.;Gilioli E.Immobilization of a pectinlyase from Aspergillus niger for application in food technology. Enzyme Microb. Technol. 1995, 17, 729-738.
    34.Alkorta,I.;Garbisu,C.;Llama,M.J.;Serra,J.L.Industrial applications of pectic enzymes : a review. Process Biochemistry. 1998, 33(1), 21-28.
    35.Xu,C.X.;Marzouk,S.A.M.;Cosofret,V.V.;Buck,R.P.;Neuman,M. R.;Sprinkle,R.H.Development of a diamine biosensor. Talanta. 1997, 44, 1625-1632.
    36.Mazzei,F.;Botrè,F.;Botrè,C.Acid phosphatase/glucose oxidase-based biosensors for the determination of pesticides. Analytica Chimica Acta. 1996, 336, 67-75.
    37.Reiss,M.;Heibges,A.;Metzger,J.;Hartmeier,W. Determination of BOD-values of starch-containing waste water by a BOD-biosensor. Biosensors &Bioelectronics. 1998, 13, 1083-1090.
    38.Kroto,H.W.;Hoath,J.R.;Brich,S.C.;Curl,R.F.,Smalley,R.E.,Nature.1985,318,162.
    39.Krätschmer,W.;Lamb,L.D.;Fostiropoulos,K.;Huffman,D.R. Solid C60 : a new form of carbon. Nature(London). 1990, 347, 354-358.
    40.Hawkins,J.M.;Meyer,A.;Lewis,T.A.;Loren,S.;Hollander,F.J. Crystal Structure of Osmylated C60 : Confirmation of the Soccer Ball Framework. Science. 1991, 252, 312-313.
    41.Withers,J.C.;Loutfy,R.O.;Lowe,T.P.Fullerene Commercial Vision. Fullerence Science And Technology. 1997, 5(1), 1-31.
    42.Scrivens,W.A.;Bedworth,P.V.;Tour,J.M.Purification of Gram Quantities of C60. A New Inexpensive and Facile Method. J. Am. Chem. Soc. 1992, 114, 7917-7919.
    43.Kroto,H.W.;Allaf,A.W.;Balm,S.P.C60: Buckminsterfullerene. Chem. Rev. 1991, 91, 1213-1235.
    44. Chen,W.;Xu,Z.Temperature Dependence of C60 Solubility in Different Solvent. Fullerence Science And Technology. 1998, 6(4), 695-705.
    45.Haufler,R.E.;Conceicao,J.;Chibante,L.P.F.; Chai,Y.; Byrne, N.E.;Flanagan,S.;Haley,M.M.; O’Brien,S.C.;Pan,C.;Xiao,Z.; Billups,W.E.;Ciufolini,M.A.;Smalley,R.H.Efficient production of C60 (buckminsterfullerene), C60H36, and the solvated buckide ion. J. Phys. Chem. 1990, 94(24), 8634-8636.
    46.Taylor,R.;Walton,D.R.M.The chemistry of fullerenes. Nature. 1993, 363, 685-693.
    47.Moriguchi,T.;Yano,K.;Hokari,S.; Sonoda,M.Effect of repeated application of C60 combined with UVA radiation onto hairless mouse back skin. Fullerene Sci. Technol. 1999, 7(2), 195-209.
    48.Al-Mohamad,A.;Allaf,A.W.,Fullerene-60 thin films for electronic applications. Synthetic Metals. 1999, 104, 39-44.
    49.Haddon,R.C.; Hebard,A.F.Conducting Films of C60 and C70 by alkai-metal doping.Nature,1991,350,320-322.
    50.Yi-Cong,Wu,;Meng-Shen,Lin,Tamkang University.
    51.Lowry,J.P.and O,Neill,R.D.,Anal.Chem.1992,64,453.
    52.Vanos, P.J.H.J.; Bult,A.andBennekom, W.P.V., Anal.Chem.Acta. 1995,305,18.
    53.Wang,J.and Chen,Q.,Anal.Chem.1994,66,1007.
    54.Creutzin, C.; Lippard Ed,S.J.,Progress in Inorganic Chemistry,1983,John Wiley,New York.
    55.Keggin J.F.and Miles,F.D.,Nature.1936,137,577.
    56.Marcus,R.A. andSutin,N,.Biochimica et Biophysica Acta.1985,811,265.
    57.Shriver, D.F.; W.Atleins,P. and Langford,C.H.,Inorganic Chemistry.1994,Oxford University Press,Oxford Melbourne,Tokyo,611.
    58.Wyckoff, R.W.G.Crystal Structures.Vol.111,2nd ed, Interscience,New York, N.Y.,1965,382.
    59.Ludi,A.;Hans-Ulrich Gudel and Ruegg,M.,Inor.Chem. 1970,9,2224.
    60.Buser H.J.; Schwarzenbach,D.; Petter,W.and Ludi,A., Inor.Chem.1977,16,2704.
    61.Itaya,K.; Shoji,N.and Uchida,I.,J.Am.Chem.Soc. 1984,106,3423.
    62.Feldman,B.J.and Melroy,O.R.,J.Electroanal.Chem. 1987,234,213.
    63.Neff,V.D.,J.Electrochem.Soc.1978,125,886.
    64.Itaya,K.;Akahoshi,H.and Toshima,S.J.Electrochem.Soc. 1982,129,1498.
    65.Pawel,J.K.and Karl,D.J.Electroanal.Chem.1989,274,95.
    66.Karyakin,A.A.; Gitelmacher,O.V. and Karyakina,E.E., Anal.Chem.1995,67,2419.
    67.Karyakin, A. A.; Karyakina, E. E.; Gorton, L.; Bobrova, O.A.; Lukachova, L.; Gladilim, A. K.; Jevashov, A. V., Anal. Chem. 1996,68(24),4335.
    68. Karyakin, A. A.; Karyakina, E. E.; Gorton, L., Anal. Chem. 2000,72(7),1720.
    69.Liang,C.;Waldemar,G.,Anal.Chem.2001,73,2862.
    70.Ghosh,S.N.,J.Inorg.Nuel.Chem,1974,36,2465.

    QR CODE