研究生: |
倪丞緯 Ni, Cheng-Wei |
---|---|
論文名稱: |
以單分子光譜觀測 CTG 重複序列的滑動現象 Real-time Observation of DNA Slippage Motions in Tandem CTG Repeats Using Single-molecule Spectroscopy. |
指導教授: |
李以仁
Lee, I-Ren |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 88 |
中文關鍵詞: | 單分子 、螢光共振能量轉移 、CTG 重複序列 、DNA 滑動 、三核苷酸重複序列擴張疾病 |
英文關鍵詞: | DNA slippage, FRET, CTG tandem repeats, Triplet repeat expansion disease, TREDs |
DOI URL: | https://doi.org/10.6345/NTNU202202927 |
論文種類: | 學術論文 |
相關次數: | 點閱:123 下載:9 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
三核苷酸重複序列會導致許多種神經退化性遺傳疾病,而其中的 CTG 重複序列是導致神經退化性脊髓小腦失調症第8型、肌強直性型肌肉萎縮症後群第一型、類亨丁頓舞蹈症第二型的主要因素,這些疾病的病患的染色體上,能夠發現其所擁有的 CTG 重複序列會有過表達的現象 (至少 35 組以上)。造成 DNA 重複序列擴張的原因,是由於 DNA 本身會形成非典型的二級結構,因此誘導 DNA 在複製、修復與重組的過程中發生滑動現象。在本篇研究中,我們使用單分子螢光共振能量轉移光譜研究 CTG 重複序列的結構動態學,其結構會與 CTG 的重複次數有關,偶數重複的 (CTG)n 會穩定折疊成兩端對齊髮夾結構;而奇數重複的 (CTG)n 則會在兩端對齊髮夾結構與單組 CTG 突出的髮夾兩種結構間,進行互相轉換,且無論重複次數多寡,構型皆傾向於兩端對齊髮夾結構。我們提出一個構型間轉換過程的局部不穩定傳遞模型,其是先由髮夾結構中的環處改變構型,並形成氣泡狀突出,之後以氣泡移動的方式,連續往末端移動,直到構型改變。而重複序列增長時,雖然總體穩定性增加,但因為構型轉換是由局部不穩定所驅動,因此此一滑動機制可以延伸到更長的序列,可能為導致DNA擴張而致病的原因之一。
Tandem nucleotide repeats are responsible for many genetic neurodegenerative disorders. Among them, the trinucleotide, CTG, repeat is the primary cause of Spinocerebellar Ataxia Type 8, Myotonic Dystrophy Type I, and Huntington disease like 2. Overexpression (>35 bases) of CTG repeat can be found in the chromosome of every patient. The possible cause of error-prone expansion is the DNA slippage induced by the folded atypia structures during DNA replication, repair or recombination process. Here, we present our single-molecule fluorescence resonance energy transfer study on the size-dependent structure and structural dynamics. A parity (even or odd) dependence was found: The even-numbered sequence folds into a stable blunt-end hairpin structure, while the odd-numbered repeat mainly folds into two hairpin structures including single-repeat overhang structure and blunt-end hairpin structure. Interestingly, dynamic interconversions between the blunt-end and the overhang configurations were observed in the longer odd-numbered-repeat sequences and the equilibrium lean toward to the blunt-end configuration. We propose a multi-step bulge transfer model: Local conformational transition at the looping region induces a bulge formation followed by stepwise bulge transferring toward the end of the hairpin and ultimately achieves the conformational change. This mechanism allows the DNA slippage extends to longer repeats that carry greater global stability and can possibly be the cause of the disease-prone expansion.
[1] Piotr Kozlowski, Mateusz de Mezer and Wlodzimierz J. Krzyzosiak. Trinucleotide repeats in human genome and exome. Nucleic Acids Research. 2010, 38, 4027–4039.
[2] Cynthia T. McMurray. Mechanisms of trinucleotide repeat instability during human development. Nat. Rev. Genet. 2010, 11, 886.
[3] Guoqi Liu, Xiaomi Chen, John J Bissler, Richard R Sinden and Michael Leffak. Replication dependent instability at (CTG)•(CAG) repeat hairpins in human cells. Nat. Chem. Biol. 2010, 6, 652–659.
[4] Sergei M. Mirkin. Expandable DNA repeats and human disease. Nature. 2007, 447, 932-40.
[5] Ankur Jain and Ronald D. Vale. RNA phase transitions in repeat expansion disorders. Nature. 2017, 546, 243–247.
[6] S. V. Mariappan, A. E. Garcoa and G. Gupta. Structure and dynamics of the DNA hairpins formed by tandemly repeated CTG triplets associated with myotonic dystrophy. Nucleic Acids Research. 1996, 24, 775–783.
[7] Lai Man Chi and Sik Lok Lam. Structural roles of CTG repeats in slippage expansion during DNA replication. Nucleic Acids Research. 2005, 33, 1604–1617.
[8] Amalia Ávila Figueroa, Douglas Cattie, and Sarah Delaney. Structure of Even/Odd Trinucleotide Repeat Sequences Modulates Persistence of Non-B Conformations and Conversion to Duplex. Biochemistry. 2011, 50, 4441–4450.
[9] F. Ritort. Single-molecule experiments in biological physics: methods ansd applications. J. Phys. Condens. Matter. 2006, 18, 531-583.
[10] Hellen C. Ishikawa-Ankerhold, Richard Ankerhold and Gregor P. C. Drummen. Advanced Fluorescence Microscopy Techniques—FRAP, FLIP, FLAP, FRET and FLIM. Molecules. 2012, 17, 4047-4132.
[11] Xuefei Wang and H. Peter Lu. 2D Regional Correlation Analysis of Single-Molecule Time Trajectories. J. Phys. Chem. B, 2008, 112, 14920–14926
[12] Hoi Sung Chung, John M. Louis, and William A. Eaton. Distinguishing between Protein Dynamics and Dye Photophysics in Single-Molecule FRET Experiments. Biophys J. 2010, 98, 696–706.
[13] 黃子芸。2016。利用單分子技術研究小腦失調症第31型特殊連續TGGAA重複序列結構動態學。碩士學位論文。台中:國立中興大學基因體暨生物資訊學研究所。
[14] Thorben Cordes, Jan Vogelsang and Philip Tinnefeld. On the Mechanism of Trolox as Antiblinking and Antibleaching Reagent. J. Am. Chem. Soc. 2009, 131, 5018–5019.
[15] Sean A. McKinney, Chirlmin Joo, Taekjip Ha. Analysis of Single-Molecule FRET Trajectories Using Hidden Markov Modeling. Biophys. J. 2006, 91, 1941-51.
[16] T.A. Kunkel. Nucleotide Repeats. Slippery DNA and Diseases. Nature, 1993, 365, 207-208.
[17] A. Marquis Gacy, Geoffrey Goellner, Nenad Juranic,Slobodan Macura, and Cynthia T. McMurray. Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell. 1995, 81, 533-540.
[18] Anna Tikhomirova, Irina V. Beletskaya, and Tigran V. Chalikian. Stability of DNA Duplexes Containing GG, CC, AA, and TT Mismatches. Biochemistry. 2006, 45, 10563-10571.
[19] Vincent Dion. Tissue specificity in DNA repair: lessons from trinucleotide repeat instability. Trends in Genetics. 2014, 30, 6.
[20] Piotr Kozlowski, Mateusz de Mezer and Wlodzimierz J. Krzyzosiak. Trinucleotide repeats in human genome and exome. Nucleic Acids Research, 2010, 38, 4027–4039.
[21] Arturo López Castel, John D. Cleary and Christopher E. Pearson. Repeat instability as the basis for human diseases and as a potential target for therapy. Molecular cell Biology. Nat. Rev. Mol. Cell. Biol. 2010, 11, 165-70.
[22] George M. Samadashwily, Gordana Raca and Sergei M. Mirkin. Trinucleotide repeats affect DNA replication in vivo. Nature Genetics. 1997, 17, 298-304.
[23] Kelly M. Schermerhorn and Sarah Delaney. A Chemical and Kinetic Perspective on Base Excision Repair of DNA. Acc. Chem. Research, 2014, 47, 1238–1246.
[24] Amalia A. Figueroa and Sarah Delaney. Mechanistic studies of hairpin to duplex conversion for trinucleotide repeat sequences. J. Biol. Chem. 2010, 285, 14648-57.
[25] S. Amrane, B Saccà, M Mills, M Chauhan, HH Klump, JL Mergny. Length-dependent energetics of (CTG)n and (CAG)n trinucleotide repeats. Nucleic Acids Research. 2005, 33, 4065-4077.
[26] Ji Huang and Sarah Delaney. Unique Length-Dependent Biophysical Properties of Repetitive DNA. J. Phys. Chem. B, 2016, 120, 4195–4203.
[27] T Lyons-Darden and M D Topal. Effects of temperature, Mg2+ concentration and mismatches on triplet-repeat expansion during DNA replication in vitro. Nucleic Acids Research. 1999, 27, 2235–2240.
[28] Christopher E. Pearson, Mandy Tam, Yuh-Hwa Wang, S. Erin Montgomery, Arvin C. Dar, John D. Cleary and Kerrie Nichol. Slipped-strand DNAs formed by long (CAG)·(CTG) repeats: slipped-out repeats and slip-out junctions. Nucleic Acids Res. 2002, 30, 4534–4547.
[29] J. Volker, N. Makube, G. E. Plum, H. H. Klump, and K. J. Breslauer. Conformational energetics of stable and metastable states formed by DNA triplet repeat oligonucleotides Implications for triplet expansion diseases. PNAS. 2002, 99, 14700-14705.
[30] G. Wang, KM Vasquez. Impact of alternative DNA structures on DNA damage, DNA repair, and genetic instability. DNA Repair (Amst). 2014, 19, 143–151.
[31] Harry T. Orr and Huda Y. Zoghbi. Trinucleotide repeat disorders. Annu. Rev. Neurosci. 2007, 30, 575-621.
[32] Do-Yup Lee and Cynthia T McMurray. Trinucleotide expansion in disease: why is there a length threshold? Curr. Opin. Genet. Dev. 2014, 26, 131–140.
[33] Daniel L. Floyd, Stephen C. Harrison and Antoine M. van Oijen. Analysis of Kinetic Intermediates in Single-Particle Dwell-Time Distributions. Biophys J. 2010, 99(2), 360–366.
[34] David W. Sanders & Clifford P. Brangwynne. Neurodegenerative disease: RNA repeats put a freeze on cells. Nature, 2017, 546, 215–216.
[35] OligoAnalyzer Tool - Integrated DNA Technologies, Inc. <https://sg.idtdna.com/calc/analyzer>
[36] Zhuang Research Lab. Harvard University.
<Zhung.harvard.edu/smFRET.html>