簡易檢索 / 詳目顯示

研究生: 廖焜熙
Kun-Hsi Liao
論文名稱: 有機立體化學成就影響因素及解題模式之研究
The Study of influence Factor of Achievement in Organic Stereochemistry and Problem Solving Model
指導教授: 邱美虹
Chiu, Mei-Hung
學位類別: 博士
Doctor
系所名稱: 科學教育研究所
Graduate Institute of Science Education
畢業學年度: 87
語文別: 中文
論文頁數: 322
中文關鍵詞: 有機立體化學、空間能力、推理能力、學習策略、化學先備知識、LISREL、解題模式
英文關鍵詞: Organic Stereochemistry, spatial ability, reasoning ability, learning strategies, prior knowledge, problem solving model , LISREL.
論文種類: 學術論文
相關次數: 點閱:253下載:41
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機立體化學成就影響因素及解題模式之研究
    摘 要
    本研究目的,在探討大學生有機立體化學學習成就的主要影響因素與學習困難的原因。研究從認知訊息處理理論,提出空間能力、推理能力、學習策略及化學先備知識,探討此四項因素與有機立體化學成就的相關以及影響路徑。其次,比較性別、年級、高中低成就組群在空間能力、推理能力、學習策略、化學先備知識及有機立體化學成就測驗的差異,以推論其對有機立體化學學習成就的影響。最後以有聲思考解題晤談法、口語資料分析,以獲悉學生解題行為、解題特質及解題模式質方面的資料。探索解題能力對有機立體化學成就的影響。
    研究對象為北區三所大學學生311人。這些學生,均分別接受五種測驗工具的施測及一篇有機立體化學教材的閱讀,以獲得量的資料。晤談對象為13人,由筆測學生中隨機抽出,接受解題晤談,以作為質的分析研究之用。
    研究結果發現:空間能力、推理能力、學習策略及化學先備知識四個因素,均與有機立體化學成就,有顯著正相關。四因素可解釋的總變異量為25.7%。而四因素之間的影響路徑,以「線性結構關係」(LISREL)驗證結果,其影響路徑是:「空間能力、學習策略及化學先備知識三者,直接影響有機立體化學成就;推理能力則經由空間能力、化學先備知識,間接影響有機立體化學成就」。
    性別、年級及高中低成就等組群的測驗成績比較,以ANOVA、ANCOVA及LISREL等方法考驗。結果發現:男女生在空間能力、推理能力、學習策略、化學先備知識及有機立體化學成就等五項測驗及十四項分測驗成績,均為男生成績高於女生,但在排除年級、系別及推理能力等之共變因子之影響後,均無顯著差異(p>.05)。年級方面,排除性別、系別之共變因子之影響後,除有機立體化學成就一項有顯著差異之外(P<.01),其餘各項均無顯著差異。高中低成就組群方面,在空間能力、推理能力、學習策略及化學先備知識及有機立體化學成就測驗,均顯示組群間的差異性。
    解題晤談研究結果發現,高中低成就組學生,不論在解題行為及解題特質方面,均顯示有明顯差異。此種結果與量的分析結果相符。在解題模式方面,分析13位學生的解題晤談的資料,發現了七種不同型態的解題模式,並且發現男女生在解題模式上的差異。男生善於利用立體圖旋轉方式解題,女生善於平面圖方式解題。
    結論:有機立體化學學習成就,不但受到認知因素的影響,也受年級及解題方面的影響。有機立體化學學習困難及成績低落的原因,是因缺乏認知能力、對整體概念理解不清及R,S組態]迷思概念所造成。研究結果對於有機化學及其他學科的學習具實質的幫助,可提供教學及學習之參考。
    關鍵詞:有機立體化學、空間能力、推理能力、學習策略、化學先備知識、LISREL、解題模式

    The Study of Influence Factors of Achievement in Organic Stereochemistry and Problem Solving Model
    Kun-Hsi Liao
    Abstract
    The purposes of this article were to investigate the factors that influence the achievement in organic stereochemistry and discuss the reasons of learning difficulty in this course. Approach from the information-processing aspect, researcher proposed four-factor variables, spatial ability, reasoning ability, learning strategies and chemical prior knowledge, to examine their relationships with organic stereochemistry achievement and their effecting path diagrams on each other. Then, in order to understand the grouping effect on organic stereochemitry learning, researcher compared the outcome differences among sex groups, class groups and achievement level groups on spatial ability test, reasoning ability test, learning strategies questionnaire, chemical prior knowledge test and organic stereochemistry achievement test. Lastly, researcher used thinking-aloud problem solving method to interview students and analyzed verbal data to understand students' problem behaviors, problem characteristics and problem models.
    311 samples collected from three universities in northern part of Taiwan. They completed five test instruments and one hand on reading-material. Paper, pencil tests were analyzed by researcher in quantitative statistical method. Thirteen students, randomly selected from mother group, interviewed by researcher in organic stereochemistry problem solving. Recalling materials were translated to protocol data and analyzed by researcher for qualitative method.
    The research results indicated that all four-factor variables, spatial ability, reasoning ability, learning strategies and chemical prior knowledge, positively related to organic stereochemistry achievement. They could explain 25.7% of total variance. The path diagram, identified by Linear Structure Relationship (LISREL), indicated that spatial ability, learning strategies and chemical prior knowledge had a direct effect path on the organic stereochemistry; but the reasoning ability through the spatial ability and chemical prior knowledge had an indirect effect path on the organic stereoechemistry achievement.
    Test scores in sex, classes, and achievement level groups, compared by ANOVA, ANCOVA, and LISREL methods. The results indicated that male had higher scores than female on spatial ability test, reasoning ability test, learning strategies questionnaire, chemical prior knowledge test and organic stereochemistry achievement test. But when to the exclusion of three covariance factors, class, department and reasoning ability, male and female had no significant difference at p> .05 on all five tests and 14 sub-tests.
    When to the exclusion of two covariance factors, sex and department, class level group had a significant difference at p< .01 on the organic stereochemistry achievement test, while other tests had no significant difference.
    Achievement level groups were significantly different at the p< .01 level on all test scores.
    In the problem solving parts, the results indicated that the three different level students, high-, middle- and low- groups had apparent differences in problem behavior and problem characteristic. Those results were similar as in the quantitative analysis. In the problem model parts, researcher analyzed thirteen students' verbal data and found seven different types of problem models. Researcher found male and female had different problem solving style. Male used to solve problems with stereographic rotation method and female used two-dimensional picture.
    Conclusively, organic stereochemistry achievement was not only effected by individual cognitive factors but also by class, and problem solving skills. The learning difficulty and score depression in organic stereochemistry achievement were attributed to scantiness of cognitive abilities, inability of understanding entire chemical concepts and misconception on R, S configuration determination. These findings would help teachers' teaching and students' learning in organic chemistry and other science subject maters.
    Key Word:Organic stereochemistry achievement, spatial ability, reasoning ability, learning strategies, prior knowledge, problem solving model, LISREL.

    目 錄 中文摘要 …………………………………………………………………… Ⅰ 英文摘要 …………………………………………………………………… Ⅲ 目錄 ………………………………………………………………………… Ⅴ 圖次 ………………………………………………………………………… Ⅶ 表次 ………………………………………………………………………… Ⅸ 第一章 緒論 ……………………………………………………………… 1 第一節 研究背景及重要性 ……………………………………………… 2 第二節 研究動機與目的 ………………………………………………… 6 第三節 研究問題與假設 ………………………………………………… 9 第四節 名詞釋義 ………………………………………………………… 11 第五節 基本假定、研究範圍與研究限制 ……………………………… 12 第二章 理論基礎與文獻探 ……………………………………………… 14 第一節 科學學習理論基礎及實證研究 ………………………………… 14 第二節 空間能力與推理能力理論及實證研究 ………………………… 27 第三節 學習策略與先備知識對學習成就的影響及實證研究 ………… 41 第四節 性別與年級之學習差異 ………………………………………… 57 第五節 線性結構關係理論基礎及相關研究 …………………………… 61 第六節 解題研究 ………………………………………………………… 75 第七節 有機立體化學解題模式 ………………………………………… 86 第參章 研究方法 ………………………………………………………… 93 第一節 研究架構 ……………………………………………………… 93 第二節 研究設計 ……………………………………………………… 96 第三節 研究對象 ……………………………………………………… 103 第四節 研究工具 ……………………………………………………… 103 第五節 研究步驟 ……………………………………………………… 117 第六節 資料處理與分析 ……………………………………………… 120 第肆章 研究結果與討論 ……………………………………………… 124 第一節 空間能力、推理能力、學習策略、化學先備知識及有機 立體化學之測驗結果 ………………………………………… 124 第二節 空間能力、推理能力、學習策略及化學先備知識與有機 立體化學成就之相關 ………………………………………… 126 第三節 有機立體化學成就因素之因果關係模式 ………………… 127 第四節 性別、年級、高低成就組群於有機立體化學成就、空間 能力、推理能力、學習策略及化學先備知識之差異 ……… 140 第五節 高中低成就組解題行為分析 ………………………………… 163 第六節 高中低成就組解題特質分析 ………………………………… 184 第七節 有機立體化學解題模式分析 ………………………………… 224 第五章 結論及建議 ……………………………………………………… 244 第一節 影響學習成就的因素 ………………………………………… 244 第二節 組群差異性比較 ……………………………………………… 245 第三節 解題研究的結論 ……………………………………………… 249 第四節 學習困難及成績低落的原因 ………………………………… 252 第五節 教學之建議及未來研究方向 ………………………………… 253 參考文獻 ……………………………………………………………… 256 中文部分 ……………………………………………………………… 256 英文部分 ……………………………………………………………… 257 附錄 …………………………………………………………………… 281 附錄A 有機立體化學成就測驗 …………………………………… 281 附錄B 空間能力測驗 ……………………………………………… 286 附錄C 推理能力測驗 ……………………………………………… 294 附錄D 學習策略量表 ……………………………………………… 300 附錄E 化學先備知識測驗 ………………………………………… 304 附錄F 有機立體化學 ……………………………………………… 309 附錄G 有機立體化學知識主要概念 ……………………………… 315 附錄H 分析化學試題I的解題類型 ……………………………… 316 附錄I 適配模式LISREL考驗程式 ……………………………… 318 附錄J 高中低成就組在空間能力差異的LISREL考驗程式 …… 319 附錄K 高中低成就組在整體潛在變項差異的LISREL考驗程式 320 附錄L 解題晤談說明與內容 ……………………………………… 322 圖 次 圖1-1 影響有機立體化學成就因素之基準模式 ……………………… 10 圖2-1 記憶系統模式 …………………………………………………… 22 圖2-2 訊息處理模式 …………………………………………………… 24 圖2-3 四種不同的深度線索表徵圖 …………………………………… 31 圖2-4 八面體的分子結構圖 …………………………………………… 32 圖2-5 「ROT」空間能力測驗試題示例 ……………………………… 33 圖2-6 智力因素 ………………………………………………………… 35 圖2-7 推理能力的內涵 ………………………………………………… 39 圖2-8 影響化學成就的路徑圖 ………………………………………… 40 圖2-9 學習策略架構圖 ………………………………………………… 46 圖2-10 推理能力、先備知識、化學成就間的徑路圖 ………………… 56 圖2-11 化學成就假設模式 ……………………………………………… 57 圖2-12 四種可能的徑路模式圖 ………………………………………… 63 圖2-13 單因素的因素分析模式圖 ……………………………………… 64 圖2-14 探索性因素模式 ………………………………………………… 65 圖2-15 驗證性因素模式 ………………………………………………… 65 圖2-16 共變數結構模式 ………………………………………………… 66 圖2-17 科學過程技能因果模式圖 ……………………………………… 73 圖2-18 問題解決過程基模圖 …………………………………………… 80 圖2-19 HA/LC組(生手)的算則解題插曲圖 …………………………… 84 圖2-20 HA/HC組(專家)的算則解題插曲圖 …………………………… 84 圖2-21 化學家(專家)的算則解題插曲圖 ……………………………… 85 圖2-22 化學現象的三種層次 …………………………………………… 87 圖2-23 假說-演繹推理順序進行圖 ……………………………………… 89 圖2-24 描繪模式及操作模式的示例圖 ………………………………… 90 圖3-1 有機立體化學學習成就相關因素模式 ………………………… 93 圖3-2 有機立體化學的起始模式………………………………………… 94 圖3-3 LISREL模式架構圖示例 ………………………………………… 97 圖3-4 有機立體化學知識概念圖 ……………………………………… 105 圖3-5 空間關係及空間方位試題素材 ………………………………… 107 圖3-6 空間關係測驗試題題幹 ………………………………………… 108 圖3-7 空間方位測驗的試題題幹 ……………………………………… 109 圖3-8 空間透視試題素材 ……………………………………………… 110 圖3-9 空間透視測驗的試題題幹 ……………………………………… 110 圖3-10 研究步驟流程圖 ………………………………………………… 118 圖4-1 起始模式LISREL考驗圖 ………………………………………… 129 圖4-2 起始模式LISREL標準殘差圖 …………………………………… 129 圖4-3 適配模式的結構圖 ……………………………………………… 132 圖4-4 適配模式之LISREL標準化殘差圖 ……………………………… 133 圖4-5 適配模式LISREL考驗圖 ………………………………………… 134 圖4-6 適配模式LISREL完全標準化解 ………………………………… 134 圖4-7 高中低組在五種潛在變項平均向量圖 ………………………… 160 圖4-8 中成就組(M4)Fischer投影式的畫法 …………………………… 168 圖4-9 錯誤的Fischer投影式寫法示例 ………………………………… 180 圖4-10 高中低成就組的三度空間圖 …………………………………… 217 圖4-11 異構物的分類圖 ………………………………………………… 219 圖4-12 中成就組M5的解題答案全圖 ………………………………… 221 圖4-13 低成就組L4的解題答案全圖 …………………………………… 221 圖4-14 M1學生的解題模式 …………………………………………… 229 圖4-15 依策略選擇方式分類的解題模式 ……………………………… 231 圖4-16 依氫的位置變動與否分類的解題模式 ………………………… 232 圖4-17 依組態變換與否區分的解題模式 ……………………………… 232 表 次 表2-1 影響科學成就因素的相關研究 ………………………………… 36 表2-2 形式測驗的種類及內涵 ………………………………………… 39 表3-1 高中低成就組差異性比較 ……………………………………… 95 表3-2 解題模式類型分析 …………….………………………………… 96 表3-3 LISREL模式矩陣符號表徵對照表 ……………………………… 101 表3-4 施測學校及人數 ………………………………………………… 103 表3-5 有機立體化學測驗題號及概念對照表 ………………………… 107 表3-6 空間關係測驗試題設計 ………………………………………… 108 表3-7 空間方位測驗鏡像試題設計 …………………………………… 109 表3-8 空間方位測驗反轉試題設計 …………………………………… 109 表3-9 空間透視測驗平面圖摺疊試題設計 …………………………… 110 表3-10 空間透視測驗立體圖展開試題設計 ..………………………… 111 表3-11 邏輯推理測驗試題設計 …….………………………………… 112 表3-12 科學推理測驗試題設計 ……………………………………… 112 表3-13 形式推理測驗試題設計 ……………………………………… 113 表3-14 學習策略量表設計 …………………………………………… 113 表3-15 化學先備知識概念測驗與試題對照表 ……………………… 116 表3-16 筆試測驗施測次序及時間 …………………………………… 119 表3-17 測驗工具的計分方式 ………………………………………… 121 表3-18 性別、年級、高低成就組在五種測驗之差異比較 ………… 121 表3-19 LISREL模式適配度的考驗標準 ……………………………… 122 表4-1 五種測驗的平均數及標準差 ………………………………… 125 表4-2 五種測驗的信度及效度 ………………………………………… 126 表4-3 四種因素與有機立體化學相關係數 …………………………… 127 表4-4 「有機立體化學因果模式」LISREL變項名稱對照表 ………… 128 表4-5 空間能力、推理能力互為因果影響路徑的考驗 ……………… 132 表4-6 適配模式LISREL的估計值 ……………………………………… 135 表4-7 適配模式考驗標準及結果 …………………………………… 136 表4-8 適配模式適配度的考驗結果 ……..…………………………… 137 表4-9 起始模式與適配模式之統計值比較 …..……………………… 139 表4-10 男女生在五種測驗的比較 …………………………………… 141 表4-11 男女生在十四種測驗的比較 ………………………………… 142 表4-12 年級在五種測驗的平均數及標準差 ………………………… 144 表4-13 年級間空間能力共變異數分析摘要表 ……………………… 145 表4-14 年級間推理能力共變異數分析摘要表 ……………………… 145 表4-15 年級間學習策略共變異數分析摘要表 .……………………… 145 表4-16 年級間化學先備知識共變異數分析摘要表 …...…………… 146 表4-17 年級間有機立體化學共變異數分析摘要表 ………………… 146 表4-18 年級間有機立體化學事後比較摘要表 ……………………… 147 表4-19 年級在十四種分測驗的差異比較 …………………………… 148 表4-20 年級間後設認知策略事後比較摘要表 ……………………… 149 表4-21 年級間一般化學測驗事後比較摘要表 ……………………… 149 表4-22 年級間知識理解測驗事後比較摘要表 ……………………… 150 表4-23 年級間動態操控測驗事後比較摘要表 ….…………………… 150 表4-24 高中低三組學生的人數及成績區分 ………………………… 153 表4-25 高中低組在五種測驗的平均數及標準差 …………………… 154 表4-26 高中低三組在五種測驗共變異數分析摘要表 .……………… 155 表4-27 高中低組在空間能力的事後比較摘要表 …………………… 156 表4-28 高中低組在推理能力的事後比較摘要表 …………………… 156 表4-29 高中低組在學習策略的事後比較摘要表 …………………… 156 表4-30 高中低組在化學先備知識的事後比較摘要表 ……………… 156 表4-31 高中低組在有機立體化學的事後比較摘要表 ……………… 157 表4-32 高中低組在五種潛在變項的LISREL差異考驗 ……………… 158 表4-33 高中低組在整體潛在變項的LISREL差異考驗 ……………… 159 表4-34 性別、年級、高中低組群在五種測驗的差異 ……………… 161 表4-35 被晤談者的個人背景資料 …………………………………… 164 表4-36 解題所需具備的基本概念 …………………………………… 165 表4-37 A群、B群概念理解情形 ……………………………………… 166 表4-38 C群、D群概念理解情形 ……………………………………… 170 表4-39 高中低三組基本概念群理解情形 ……………………………… 177 表4-40 高中低三組學生的解題表現 ………………………………… 178 表4-41 高中低三組的解題平均答對率 ……………………………… 179 表4-42 解題策略的項目及特質分析表 ……………………………… 184 表4-43 三組在第一題試題的解題策略分析 ………………………… 185 表4-44 三組在第二題試題的解題策略分析 ………………………… 186 表4-45 三組在第三題試題的解題策略分析 ………………………… 186 表4-46 高中低成就組解題策略優劣比較表 ………………………… 187 表4-47 三組學生解題策略的異同比較 ……………………………… 188 表4-48 三組學生解題過程特質比較 ………………………………… 210 表4-49 解題表徵系統的分類 ………………………………………… 211 表4-50 高中低三組學生的解題表徵分析 …………………………… 212 表4-51 三組學生在解題表徵上之比較 …………………………… … 222 表4-52 高中低成就組的解題流程分析 ……………………………… 226 表4-53 高中低組群推理模式分析 …………………………………… 229 表4-54 解題模式各組人數的分佈情形 ……….……………………… 232

    參考文獻
    大美百科全書(民83):71頁。光復書局。
    王文科(民72):認知發展理論與教育-皮亞傑理論的應用。五南圖書出版公司。
    李詠吟(民76):認知/行為的學習策略對國中生學業成績的影響。國立彰化師範大學輔導學報,10期,299~320頁。
    吳裕益(民76):認知能力與認知型態個別差異現象之探討。高雄師大教育學刊,7期,51~98頁。
    吳靜吉、程炳林(民81):激勵的學習策略量表之修訂。中國測驗學會測驗年刊,39輯,59~78頁。
    吳靜吉、程炳林(民82):國民中小學生學習動機、學習策略與學業成績之相關研究。國立政治大學學報,66期 (上),13~39頁。
    邵瑞珍(民82):中國大百科全書(教育),441頁。錦繡出版社。
    林邦傑(民71):我國國中及高中學生認知發展之研究。科學教育月刊,51期,12~21頁。
    林清山(民73):「線性結構關係」(LISREL)電腦程式的理論與應用。中國測驗學會測驗年刊,31輯,149~164頁。
    林振霖(民82):我國學生分子概念與診斷教學的研究:(二)我國學生分子概念發展的研究。彰師學報,4期,337~398頁。
    林振霖、楊瑞典(民83):中學生分子概念與認知能力的相關研究。中華民國第10屆科學教育學術研討會論文彙編,309~347頁。
    邱美虹(民85):學習策略與科學學習。科學教育月刊,191期,2~15頁。
    邱美虹、廖焜熙(民85):立體化學與空間能力。第一屆化學教育學術研討會,64~68頁。
    邱美虹、翁雪琴(民84):國三學生學習「四季成因」的影響。科學教育學刊,3卷,1期,23-68頁。
    姜文閔、韓宗禮(民83):教育百科辭典,689頁。五南圖書出版社。
    張景媛(民79):不同後設認知能力的大學生在學業成績與認知適應上之差異。中國測驗學會測驗年刊,37輯,143~162頁。
    張新仁(民71):國中學生學習行為-學習方法、學習習慣與學習態度之研究。國立台灣師範大學教育研究所碩士論文。
    張春興(民78):張氏心理學辭典,372頁。東華書局。
    陳良臣編著(民77):化學總整理。台大圖書出版社。
    陳英孟編(民78):化學原理問解。華香園出版社。
    陳岳鴻編著,許延年校訂(民79):有機化學。東華書局印行。
    陳正昌、程炳林(民83):SPSS、SAS、BMDP統計軟體在多變量統計上的應用。五南圖書出版公司。
    黃寶鈿、黃湘武(民74):學生莫耳概念發展研究:不同物質莫耳概念。中華民國第1屆科學教育學術研討會論文彙編,221~230頁。
    黃寶鈿(民77):邏輯思考能力評量工具的編制。師大學報,33期,485~505期。
    曾國輝編著(民78):化學問題指引,第二版。藝軒圖書出版社。
    廖焜熙、邱美虹(民85):三維度視覺化技能在化學學習上的探討。科學教育月刊,189期,14~36頁。
    鄭世雄、魏百祿、陳克紹、楊慶昌(民79):有機化學(上冊) ,第二版。藝軒圖書出版社。
    鄭昭明(民81):認知心理學-理論與實踐。桂冠圖書出版。
    劉維琪(民82):高等教育法規選輯,1頁。
    潘家寅譯(民78):大學化學(上冊),第三版。東華書局。
    Ager, T. (1993). Online placement testing in mathematics and chemistry. Journal of Computer Based Instruction, 20(2), 52~57.
    Alexander, P. A., Pate, E. P., Kukiowich, J. M., & Wright, N. L. (1989). Domain-specific and strategic knowledge: Effects of training on students of differing ages or competence levels. Learning and Individual Differences, 1, 283~325.
    Alexander, P. A., Kukiowich, J. M., & Schulze, S. K. (1992,April). How subject-matter knowledge affects recall and interest. Paper presented at the annual meeting of the American Educational Research Association, San Francisco.
    Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In K. Spence & J. Spence(Eds.), The psychology of learning and motivation, 2. New York: Academic press.
    Atkinson, R. C. (1995). In control of stereochemistry. Chemistry in Britain, Dec. 953~957.
    Atwater, M. M., & Alick, B. (1990). Cognitive development and problem solving of Afro-american students in chemistry. Journal of Research In Science Teaching, 27(2), 157~172.
    Australian Council of Education Research (1978). Science Item Bank, Book 2. Hawthorn, Australia.
    Ausubel, D. P. (1968). The Psychology of meaningful verbal learning: an Introduction to School Learning(2nd, ed.). New York: Grune & Stratton.
    Ausubel, D. P., Novak, J., & Hanesian, H. (1978). Educational Psychology: A Cognitive View(Holt, Rinehart and Winston, New York).
    Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Academic of Marketing Science, 16, 76~94.
    Baker, S. R., & Talley, L. H. (1972). The relationship of visualization skills to achievement in freshman chemistry. Journal of Chemistry Education, 49, 775~777.
    Bandura, A. (1989). The multidimensional self-efficacy scales. Unpublished test, Stanford University, Stanford, CA.
    Barnes, G. (1977). Scores on a Piaget-type questionnaire versus semester grades for low-division college physics students. American Journal of Physics, 45, 841~847.
    Bauman, R. P. (1976). Applicability of Piagetian theory of college teaching. Journal of College Science Teaching, 6, 94~96.
    Baumrind, D. (1983). Specious causal attribution in the social sciences: The reformulated stepping-stone theory of heroin use as exemplar. Journal of Personality and Social Psychology, 45, 1289~1298.
    Biggs, J. B. (1987). Student Approaches to Learning and Studying (Australian Council for Educational Research, Melbourne).
    Birk, J. P. (1994). Chemistry. Houghton Mifflin Company.
    Bishop, J. E. (1978). Development of sensitivity to static pictorial depth information. Perception and Psychophysics, 13, 361~366.
    Bloom, B. S. (1976). Human characteristics and school learning. New York: McGraw-Hill.
    Bock, R. D., & Bargmann, R. E. (1966). Analysis of covariance structures. Psychometrika, 31, 507~534.
    Bodner, G. M., McMillen, L. B., & Greenbowe, T. J. (1983,August). Verbal Numerical and Perceptual skills Related to Chemistry Achievement. American Psychological Association. (91'st, Anaheim, CA.).
    Bodner, G. M., Theresa, L. B., & McMillen. (1985,April). Cognitive Restructuring as a First Step in Problem Solving. Paper Presented at the Annual Meeting of the National Association for Research in Science Teaching (15'th, French Lick Springs, IN.).
    Bodner, G. M., Theresa, L. B. & McMillen. (1986). Cognitive Restructuring as an early stage in Problem Solving. Journal of Research in Science Teaching, 23(8), 727~737.
    Boikess, R. S., & Edelson, E. (1978). Chemical principles. New York: Harper and Row.
    BouJaoude, S. B. (1992). The Relationship between Students' Learning Strategies and the change in the their Misunderstandings During a High School Chemistry Course. Journal of Research in Science Teaching, 29(7), 687~699.
    Bowen, C. W. (1990). Representational system used by graduate students while problem solving in organic synthesis. Journal of Research in Science Teaching, 27(4), 351-370.
    Breckler, S. J. (1990). Application of Covariance Structure Modeling in Psychology: Cause for Concern? Psychological Bulletin, 10, 260~273.
    Brinkmann, E. (1966). Programmed instruction as a technique for improving spatial visualization. Journal of Applied Psychology, 50, 179~184.
    Byrne, B. M. (1989). A primer of LISREL Basic applications and programming for confirmatory factor analytic models. Springer-Verlag New York Berlin Heidelberg London Pairs Tokyo Hong Kong.
    Camacho, M., & Good, R. (1989). Problem solving and chemical equilibrium: successful versus unsuccessful performance. Journal of Research in Science Teaching, 26(3), 251~272.
    Carter, C. S., LaRussa, M. A., & Bonder, G. M. (1987). A study of two measures of spatial ability as predictors of success in different levels of general chemistry. Journal of Research in Science Teaching, 24(7), 645~657.
    Casey, M. B. (1996). Understanding individual differences in spatial ability within females: a nature/nurture interactionist framework. Development Review, 16(3), p241-60.
    Champagne, A., Klopfer, L., De Sena, A., & Squires, D. (1981). Structural representations of students' knowledge before and after science instruction. Journal of Research in Science Teaching, 18, 97~111.
    Chang, C. Y. & Barufaldi, F. P. (1999). The use of a problem-solving-based instructional model in initiating change in students' achievement and alternative frameworks. International Journal of Science Education, 21(4), 373~388.
    Chase, W. G., & Simon, H. A. (1973). The mind's eye in chess. In W.G. Chase(Ed.), Visual information processing. New York: Academic Press.
    Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121~152.
    Chi, M. T. H. (1993). Analyzing Verbal Data to Represent Knowledge: A practical Guide. The Learning Research and Development center, University of Pittsburgh, Pittsburgh, PA15260, USA.
    Chi, M. T. H., & Greeno, J. G. (1994). Modeling expertise. In D. Druckman & R. Bjorke(Eds.). In the mind's eye: Understanding Human performance. National Academy Press, Washington: D. C.
    Cliff, N. (1983). Some cautions concerning the application of causal modeling methods. Multivariate Behavioral Research, 18, 115~126.
    Cohen, H., Hillman, D., & Agne, R. (1978). Cognitive level and college physics achievement. American Journal of Physics, 46, 1026.
    Coleman, S. L. & Gotch, A. J. (1998). Spatial perception skills of chemistry students. Journal of Chemical Education, 75(2), 206-209.
    Corno, L. (1989). Self-regulated learning : A volitional analysis. In B. J. Zimmerman & D. H. Schunk (Eds.), Self-regulated learning and academic achievement(pp.111~141). New York: Springer-Verlag.
    Cox, R. (1999). Representation construction, externalised cognition and individual differences. Learning and Instruction, 9,343-363.
    De Groot, A. D. (1965). Thought and choice in chess. The Hague: Mouton.
    Deregowski, J. B. (1968). Difficulties in pictorial depth perception in Africa. British Journal of Psychology, 59, 195-204.
    DeMars, C. (1998). Item estimates under low-stakes conditions: how should omits be treated? Paper presented at a poster session at the Annual Meeting of the American Educational Research Association(San Diego, CA, April 13-17, 1998).
    Dillashaw, F. G., & Okey, J. R. (1980). Test of the integrated science process skills for secondary science students. Science Education, 64(5), 601~608.
    Dochy, F. J.R.C., Valcke, M. M. A., & Wagemans, L. J. J. M. (1991). Learning economics in higher education: An investigation concerning the quality and impact of expertise. Higher Education in Europe, 16(4), 123~136.
    Dochy, F. J.R.C. (1992). Assessment of prior knowledge as a determinant of future learning: the use of knowledge state tests and knowledge profiles. Utrecht/London: Lemma B. V. /Jessica Kingsley Publishers.
    Dochy, F. J.R.C. (1994a). Investigating the use of knowledge profiles in a flexible learning environment: Analyzing students' prior knowledge states. In S. Vosniadou, E. De Corte, & H, Mandl (Eds.). Technology-base learning environments: Psychological and educational fundations(pp. 235~242).Berlin/Heidelberg/New York: Springer-Verlag.
    Dochy, F. J.R.C. (1994b). Prior Knowledge and learning. In T. Husen & T. N. Postlethwaite(Eds.), International encyclopedia of education(2nd.). (pp.4698~4702). Oxford/New York: Pergamon.
    Dochy, F. J.R.C. (1996). Assessmetnt of domain-specific and domain-transceding prior knowledge: Entry assessment and the use of profile analysis. In M. Birenbaum & F. J. R. C. Dchy(Eds.), Alternatives of assessment in achievement, learning process and prior learning(pp. 227~264). Boston: Kluwer.
    Dochy, F. J.R.C., Moerkerke, G., & Martens, R. (1996). Integrating assessment, learning and instruction: assessment of domain-specific and domain-transcending prior knowledge and program. Studies in Educational Evaluation, 22(4), 309~339.
    Duncan, O. D. (1975). Introduction to structural equation models. New York: Academic Press.
    Ebbing, D. D. (1996). General Chemistry 5'th. Houghton Mifflin Company. Boston Toronto.
    Edidra, J. Y., Arthur J. R., & Hebert, J. W. (1996). Science Achievement and Educational Productivity: A Hierarchical Linear Model. The Journal of Educational Research, 89(5), 272~278.
    Eliot, J., & Hauptman, A. (1981). Different dimension of spatial ability. Studies in Science Education, 8, 45-66.
    Elizabeth, H. H., & Michael, P. (1991). Relationship between students' conceptual knowledge and study strategies-part 1: student learning in physics. International Journal of Science Education, 13 (3), 303~312.
    Elizabeth, H. H., & Michael, P. (1991). Relationship between students' conceptual knowledge and study strategies-part 2: student learning in biology. International Journal of Science Education, 13(4), 421~429.
    Entwistle, N., & Ramsden, P. (1983). Understanding student learning. London: Creom Helm.
    Evans, G. S. & Seddon, G. M. (1978). Responsiveness of Nigerian students to pictorial depth cues. Educational Communication & Technology, 26, 313~320.
    Fan, X., Thompson, B., & Wang, L. (1999). Effects of sample size, estimation methods, and model specification on structural equation modeling fit indexes. Structural Equation Modeling, 6(1), 56-83.
    Ferrini, M. J. (1987). Spatial training for calculus students sex differences in achievement and in visualization ability. Journal for Research in Mathematics Education, 18, 126-140.
    Fennema, E. L. (1974). Mathematics Learning and the sexes: A review. Journal for Research in Mathematics Education, 5, 126~139.
    Flavell, J. H., Friefrichs, A. G., & Hoyt, J. D. (1970). Developmental changes in memorization processes. Cognitive Psychology, 1, 324~340.
    Flavell, J. H., & Wellman, H. M. (1977). Metamemory. In R. V. Kail & J. W. Hagen(Eds.), Perspectives on the development of memory and cognition. Hillside, NJ: Erlbaum.
    Flavell, J. H. (1976). Metacognitive aspects of problem solving. In L. B. Resnick(Ed.), The nature of intelligence. Hillside, N J: Erlbaum.
    Flavell, J. H. (1978). Metacognitive development. In J. M.Scandura, & C. J. Brained(Eds.), Structural process theories of complex human behavior. Alphen a. d. Rijn: Sijthoff & Noordhoff.
    Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry. American Psychologist, 34, 906~911.
    Foong, Y. Y., & Others (1992,May). Factors Influencing Science Learning Outcomes for 14-Year-Old Singaporean Students. Paper presented at the Annual Meeting of the New England Educational Research Organization(Portsmouth, NH.).
    Gabel, D. L., & Sherwood, R. D. (1984). Problem-Solving Skills of high school chemistry students. Journal of Research in Science Teaching, 21 (2), 221~223.
    Gabel D. L., Briner, D., & Haines, D. (1992). Modeling with Managements. The Science Teacher, March, 58~63.
    Gagne, R. M., & Briggs, L. J. (1974). Principles of instructional design. New York: Holt, Rinehart and Winston.
    Gallagher, S. A. (1994). Middle school predictors of science persistence. Journal of Research in Science Teaching, 31, 721~734.
    Garcia, Teresa., et. al., (1993,April). Women and Minorities in Science: Motivational and Cognitive Correlates of Achievement. Paper presented at the Annual Meeting of the American Educational Research Association (Atlanta, GA.).
    Gardner, H. (1985). Frames of Mind: The theory of multiple intelligence. Basics Books.
    Garcia, T., & Pintrich, P. R. (1991,August). The Effects of Autonomy on Motivation, Use of Learning Strategies, and Performance in the college classroom. Paper presented at the Annual convention of the American Psychological Association(99' th, San Francisco, CA.).
    Garcia, T., & Pintrich, P. R. (1995,April). Assessing Students' Motivation and Learning Strategies: The Motivated Strategies for Learning Questionnaire. Paper presented at the Annual Meeting of the American Educational Research Association(San Francisco, CA.).
    Germann, P. J. (1989). The Process of Biological investigations Test. Journal of Research in Science Teaching, 26(7), 609~625.
    Germann, P. J. (1994). Testing a Model of Science Process Skills Acquisition: An Interaction with Parents' Education, Preferred Language, Gender, Science Attitude, Cognitive Development, Academic Ability, and Biology knowledge. Journal of Research in Science Teaching, 31(7), 749~783.
    Germann, P. J. (1996). Structural Modeling: A Reply to Frances Lawrenz and Douglas Huffman. Journal of Research in Science Teaching, 33 (4), 455~457.
    Gibson, E. J., & Walk, R. D. (1960). The visual cliff. Scientific American, 202, 64~71.
    Gibson, E . J. (1971). The information available in pictures. Leonardo, 4, 27~35.
    Glaser, R., & Chi, M. T. H. (1988). The Nature of Expertise. Lawrence Erlbaum Associates.
    Glass, Arnold Lewis & Holyoak Keith James. (1986). Cognition. Second Edition, McGraw-Hill International Editions, Psychology Series.
    Golbeck, S. L. (1986). The role of physical content in Piagetian spatial tasks: sex differences in spatial knowledge? Journal of Research in Science Teaching, 23, 356~376.
    Gonzalez, B. L. (1998). The influence of conceptions of molecular structure and patterns of problem-solving on the process of learning to interpret nuclear magnetic resonance spectra. Paper presented at the Annual Meeting of the American Educational Research Association(San Diego, CA, April 13-17, 1998).
    Goodman, N. (1968). Languages of Art: An Approach to a Theory of Symbols. Indianapolis: Bobbs-Merrill.
    Greenbowe, T. J. (1984). An investigation of variables involved in chemistry problem solving. Doctoral dissertation, Purdue University, West Lafayette, IN. Dissertation Abstracts International, 44. 3651A
    Griffiths, D. H. (1976). Physics teaching: Does it hinder intellectual development? American Journal of Physics, 44, 81~85.
    Guag, R., McDaniel, E., & Angelo, S. (1978). Correlates of performance on spatial aptitude tests. Final Report for the U. S. Army Research Institute.
    Guilford, J. P. (1982). Cognitive psychology's ambiguities: Some suggested remedies. Psychological Review, 89, 48~59.
    Haertel, G. D., Walberg, H. J., & Weinstein, Th. (1983). Psychological models of educational performance: A theoretical synthesis of constructs. Review of Educational Research, 53(1), 75~91.
    Harman, G. (1994). Student selection and admission to higher education: Policies and practices in the Asian region. Higher Education, 27(3), 313~341.
    Hayes, J. R. (1981). The complete problem solver. Philadelphia: The Franklin Institute Press.
    Herron, J. D. (1993,April). Students' understanding of chemistry: An issue in chemical Education. A paper present at the Nyholm Symposium, Royal Society of chemistry, London, England.
    Hilton, T. L., & Berglund, G. W. (1974). Sex difference in mathematics achievement: A longitudinal study. Journal of Educational Research, 67, 231~237.
    Holyoak, k. J. (1990). Problem Solving. In D. N. Osherson & E. E. Smith(Eds.), Thinking: An invitation to Cognitive Science. Cambridge, MA: MIT Press, pp. 117~146.
    Horris, D. (1940). Factors Affecting College Grade: A Review of Literature. Psychological Bulletin, 37(2).
    Hudson, W. (1960). Pictorial depth perception in sub-cultural groups in Africa. Journal of Social Psychology, 52, 183-208.
    Hunt, E. B. (1976). Varieties of cognitive power. In L. B. Resnick(Ed.), The nature of intelligence. Hillside, NJ: Erlbaum.
    Hunt, E. B. (1978). Mechanisms of verbal ability. Psychological Review, 85, 109~130.
    Hunt, E. B. (1985). Verbal ability. In R. J. Sternberg(Ed.), Human abilities: An information-processing approach. New York: W. H. Freeman and Company.
    Ingle, R. B., & Shayer, M. (1971). Conceptual demands in Nuffield- Level Chemistry. Education in Chemistry, 8, 182~183.
    Jahoda, G., & Mcgurk, H. (1974). Development of pictorial depth perception: cross-cultural replication. Child Development, 45, 1042-1047.
    James, L. R., Mulaik, S. A., & Brett, T. M. (1982). Causal analysis: Assumptions, models, and data. Beverly Hill, CA: Sage.
    Johnson, M. A., & Lawson, A. E. (1998). What are the relative of reasoning ability and prior knowledge on biology achievement in expository and inquiry classes? Journal of Research in Science Teaching, 35(1), 89-103.
    Johnston, A. (1990). Fashions, Fads, and Facts in Chemistry Education. Paper presented at the American Chemical Society Meeting, Washington, D. C.
    Joseph, H. F. (1992). Multivariate data analysis with readings. 3'th. New York: Macmillan; Toronto: Maxwell Macmillan Canada.
    Joseph, H. F., Anderson, R. E., Tatharn, R. L., & Black, W. C. (1995). Multivariate data analysis with reading, 4'th. Prentice Hall, Englewood Cliffs, New Jersey 07632.
    Joreskog, K. G., & Sorbom, D. (1978). LISREL Ⅳ. Chicago: National Educational Resources.
    Joreskog, K. G. (1979a). Analyzing psychological data by structural analysis of covariance matrices. In Jay, Magidson (Ed.), Advances in factor analysis and structural equation models. Cambridge, Mass: Abt Associates.
    Joreskog, K. G. (1979b). Statistical estimation of structural models in longitudinal-developmental investigations. In J. R. Nesselroade & P. B. Baltes(Eds.), Longitudinal research in the study of behavior and development. New York: Academic Press.
    Joreskog, K. G., & Sorbom, D. (1984). LISREL Ⅵ.Mooresville, IN: Sciencetific Software.
    Joreskog, K. G., & Sorbom, D. (1988). LISREL 7: A guide to the program and application. Chicago: SPSS.
    Joreskog, K. G., & Sorbom, D. (1989). LISREL 7 user's reference guide. Mooresille, IN: Scientific Software, Inc.
    Joreskog, K. G., & Sorbom, D. (1993a). Structural Equation Modeling with the Simplis Command Language. LEA.
    Joreskog, K. G., & Sorbom, D. (1993b). LISREL 8 user's reference guide. Chicago: Scientific Software Internatinal.
    Joreskog, K. G., & Sorbom, D. (1998). LISREL 8.20 Software. Chicago, IL 60646-1704, Scientific Software International. 7383 N.
    Joreskog, K. G., & Thillor, M. V. (1972). LISREL: A genral Computer Program for Estimating a Linear Structural Equation System Involving Multiple Indicators of Unmeaured Variances. Princeton, NJ: Educational Testing Service.
    Kavannaugh, R. D., & Moonaw, W. R. (1989). Inducing formal thought in introductory chemistry students. Journal of Chemical Education, 58, 263~265.
    Kilpatrick, J. (1968). Analyzing the solution of word problems in mathematics: an exportation study, Dissertation Abstracts International, 28, 4380.(University Microfilm No. 68-06442, 179).
    Kim, J., & Mueller, C. W. (1978). Introduction to factor analysis: What it is and how to do it. Beverly Hills, CA: Sage.
    Knuver, A. W. M., & Brandsma, H. P. (1993). Cognitive and Affective Outcomes in School Effectiveness Research. School Effectiveness and School Improvement, 4(3), 189~204.
    Kolodiy, G. (1975). The cognitive development of high school and college science students. Journal of College Science Teaching, 5, 20~22.
    Kohler, W. (1927). The mentality of the apes, New York: Harcourt, Brace & World.
    Kohler, J. (1987). Die Entwicklung von Gedachtnis-und Metagedachtnis-leistungen in Abhangigkeit von bereichsspezifischen Vorkenntnissent﹝Memory and meta-memory achievement in relation to domain-specific prior knowledge﹞. Frankfurt: Peter Lang.
    Koslow, R. E. (1987). Sex-related differences and visual spatial mental imagery as factors affecting symbolic motor skill acquisition. Sex Roles, 17, 521-527.
    Kosslyn, S. M. (1981). Research on mental imagery: Some goals and direction. Cognition, 10, 173~179.
    Krasnoff, A. G., Walker, J. T., & Howard, M. (1989). Early sex-linked activities and interests related to spatial abilities. Personality and Individual Differences, 10, 81-85.
    Kush, J. C. (1996). Field-dependence, cognitive ability, and academic achievement in Anglo American and Mexican American students. Journal of Cross-Cultural Psychology, 27(5), 561-575.
    Larkin., McDermott, J., Simmon, D. P., & Simon, H. A. (1980). Expert and novice performance in solving physics problems. Science, 208, 1335~1342.
    Lawrenz, F., & Huffman, D. (1996). Consideration in Structural Modeling Research, 33(3), 339~341.
    Lawson, A. E., & Renner, J. W. (1975). Relationship of science subject matter and developmental level of learners. Journal of Research in Science Teaching, 2, 347~358.
    Lawson, A. E. (1978). The development and validation of a classroom Test of formal Reasoning. Journal of Research in Science Teaching, 15, 11~24.
    Lawson, A. E. (1980). Relationships among level of intellectual development, cognitive style, and grades in a college biology course. Science Education, 64, 95~102.
    Lawson, A. E. (1983). Predicting science achievement: The role of development level, disembedding ability, mental capacity, prior knowledge and beliefs. Journal of Research in Science Teaching, 20, 117~129.
    Lawson, A. E. (1985). A review of research on formal reasoning and science teaching. Journal of Research in Science Teaching, 22(7), 569~617.
    Lawson, A. E., Abraham, M., & Renner, J. (1989). A theory of instruction: using the learning cycle to teach science concepts and thing skills. Cincinnate, OH: National Association for Research in Science Teaching.
    Lawson, A. E. (1992). What do Tests of Formal Reasoning Actually Measure? Journal of Research in Science Teaching, 29(9), 965~983.
    Lee, D. M. S., Pliskin, N., & Kahn, B. (1994). The relationship between performance in a computer literacy course and students' prior achievement and knowledge. Journal of Educational Computing Research, 10(1), 63~77.
    Lent, R. W., Brown, S. D., & Larkin, K. C. (1984). Relation of selfefficacy expectations to academic achievement and persistence. Journal of Counseling Psychology, 31(3), 356~362.
    Levin, J. R. (1976). What have we learned about maximizing what children learn? In J. R. Levin & V. L. Allen(Eds.), Cognitive learning in children. New York: Academic Press.
    Liben, L. S., & Golberk, S. L. (1986). Hdut' demonstration of underlying Euccidean concepts in relation to task context. Developmental Psychology, 22, 487~490.
    Limstromberg & Mgarten. (1987). Organic Chemistry.
    Linn, M. C., & Kyllonen, P. (1981). The field dependence-independence construct: Some, one, or none. Journal of Educational Psychology, 73, 261~273.
    Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis, Child-Development, 1479~1498.
    Linn, M. C. (1986). Science. In R. F. Dillon & R. J. Sternberg(Eds.), Cognition and instruction(pp155~204). New York: Academic.
    Loehlin, J. C. (1992). Latent variable models: An introduction to factor, path, and structural analysis(2nd ed). Hillside, NJ: Lawrence Erlbaum Associaties.
    Lohman, D. F. (1979). Spatial ability. A review and re-analysis of correlational Literature. Stanford University Technical Report 8.
    Lohman, D. F. (1986). The effect of speed-accuracy tradeoff on sex differences in mental rotation. Perception and Psychophsics, 39, 427~436.
    Long, J. Scott. (1983a). Confirmatory factor analysis. a SAGE university paper, 33.
    Long, J. Scott. (1983b). Covariance structure models an introduction to LISREL. a SAGE university paper, 34.
    Lord, T. R. (1987). A look at spatial abilities in undergraduate women science majors. Journal of Research in Science Teaching, 24(8), 757~767.
    Lord, T., & Holland, M. (1997). Preservice secondary education majors and visual-spatial perception: an important cognitive aptitude in the teaching of science and mathematics. Journal of Science Teacher Education, 8(1), 43-53.
    Loudon, G. M. (1995). Organic Chemistry 3'th. The Benjamin/ Cummings Publishing Company. CA.
    Macan, T. H., & Shahani, C. (1990). College students' time management: correlations with academic performance and stress. Journal of Educational Psychology, 82(4), 760~768.
    MacCallum, R. C. & Hong, S. (1997). Power analysis in covariance structure modeling using GFI and AGFI. Multivariate Behavioral Research, 32(2), 193-210.
    Maccoby, E. E., & Jacklin, C. N. (1974). The Psychology of sex differences. Stanford, CA: Stanford University Press.
    Macnab, W., & Johnstone, A. H. (1990). Spatial skills which contribute to competence in the biological science. Journal of Biological Education, 24, 37~41.
    Marsh, H. W. (1998). The equal correlation baseline model: comment and constructive alternatives. Structural Equation Modeling, 5(1), 78-86.
    Mason, D., Crawley, F. E. (1994,March). Difference between Algorithmic and Conceptual Problem Solving by Nonscience Majors in Introductory Chemistry. Paper presented at the Annual Meeting of the National Association of Research in Science Teaching (67'th, Anaheim, CA.).
    Mayes, J. T., Jahoda, G., & Neilson, I. (1988). Patterns of visual- spatial performances and " spatial ability " : dissociation of ethnic and sex differences. British Journal of Psychology, 79, 105-119.
    Mayer, R. E. (1983). Can you repeat that? Qualitative and quantitative effects of repetition and advance organizers on learning from science prose. Journal of Educational Psychology, 75, 40~49.
    Mayer. R. E. (1986). Educational Psychology: A Cognitive Approach. Harper Collins Publisher.
    McDaniel, E. D. (1974). Development of a group test for assessing perceptual abilities. Perceptual and motor skills, 39, 669~670.
    McGee, M. (1979). Human spatial abilities, Psychometric studies and environmental, genetic, hormonal, and neurological influences. Psychological Bulletin, 86, 889~918.
    McKeachie, W. J., Pintrich, P. R., & Lin, Y. G. (1985). Teaching learning strategies. Educational Psychologist, 20, 153~160.
    McKeachie, W. J., Pintrich, P. R., Lin, Y. G., & Smith, D. (1986). Teaching and learning in the college classroom: A review of research literature. Ann Arbor, MI: National Center of Research to Improve Postsecondary Teaching and Learning, The University of Michigan.
    Millman, J., Bishop, C. H., & Ebel, R. (1965). An analysis of test-wiseness. Educational and Psychological Measurement, 25, 707~726.
    Minnaert, A., & Janssen, P. J. (1992). The causal role of domain-specific prior knowledge on study skills and curriculum outcomes after five academic years. Tijdschrift voor Hoger Onderwijs, 10(3), 134~142.
    Minnaert, A., & Janssen, P. J. (1996). How general are the effects of domain-specific prior knowledge on study expertise as compared to general thinking skills? In M. Birenbaum, & F. Dochy (Eds.), Alternatives in assessment of achievements, learning processes and prior learning(pp. 265~282). Boston: Kluwer.
    Mezl, V. A. (1996). Using one's hands for naming optical isomers and other stereochemical positions. Biochemical Education, 24(2), 99-101.
    Moely, B. E., Olson, F. A., Halwes, T. G

    下載圖示
    QR CODE