研究生: |
蕭鈞庭 Hsiao, Chun-Ting |
---|---|
論文名稱: |
應用超快雷射技術於石墨烯奈米銀金屬粒/聚醯亞胺複材之熱檢測元件探討 Application of Ultra-Fast Laser Technique on Thermal Sensing Device of Graphene-Silver Metal Nanoparticles/Polyimide Composites |
指導教授: |
張天立
Chang, Tien-Li |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 114 |
中文關鍵詞: | 超快雷射 、奈米金屬粒子 、石墨烯 、熱檢測元件 、氣體感測 |
英文關鍵詞: | Ultrafast laser, Metal nanoparticles, Graphene, Heating sensing device, Gas detection |
DOI URL: | http://doi.org/10.6345/NTNU202001563 |
論文種類: | 學術論文 |
相關次數: | 點閱:147 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用超快雷射製程技術(Ultrafast laser processing technique)進行微結構(Microstructures)之熱元件(Heating device)製作及其特性之探討,以應用於氣體檢測(Gas detection)。在本研究中會使用超快雷射直寫技術分別於石墨烯(Graphene)/聚醯亞胺(Polyimide, PI)基材及奈米銀(Silver nanoparticles, AgNPs)/石墨烯/PI基材進行雷射測試,固定重複率為300 kHz、加工次數3次下,在振鏡掃描速度為500 mm/s及雷射能量密度為2.45 J/cm2,完成薄膜製程及元件製作,並依此參數製作不同寬度熱檢測元件。研究顯示在相同寬度5 mm下,石墨烯/PI基板給予功率6.10 W時,最高溫約134 ℃;奈米銀/石墨烯/PI基板給予功率5.83 W時,最高溫約104 ℃。另外,在相同寬度6 mm下,石墨烯/PI基板給予功率為6.10 W時,最高溫約110 ℃;奈米銀/石墨烯/PI基板給予功率4.48 W時,最高溫約113 ℃。進一步本研究顯示在寬度6 mm之奈米銀/石墨烯/PI基材熱檢元件,能給予較少功率,產生出100 ℃以上溫度,且基材彎曲90 o時,溫度仍能維持在100 ℃以上。同時,本研究搭配設計所製作的指叉狀(Interdigitated)電極元件進行氣體量測,研究顯示在一氧化氮(Nitric oxide, NO)濃度為650 ppm時,該元件電阻值可從78 上升至85 ,氣體響應值約9 %,且氣體響應值會隨氣體濃度增加而上升。
This study proposes the ultrafast laser processing technique to form heating device with microstructures and investigate its characteristics for applying for gas detection. Herein, the ultrafast laser direct-writing technique can be used on graphene/polyimide (PI) and graphene/silver nanoparticles (AgNPs)/PI respectively to perform the tests. Under the fixed repetition rate set to 300 kHz with processing of 3 times, the thin-film process and device were be performed at the controlled scanning speed of the galvanometer and laser fluence, which can be 500 mm/s and 2.45 J/cm2, respectively. According to these parameters, the thermal sensing device with different width can be fabricated. The study revealed that under the width of 5 mm electrode for graphene/PI substrate was achieved the highest temperature of 134 oC when being given the power of 6.10 W. And then, the same design width for graphene/silver nanoparticles/PI substrate was achieved the highest temperature of 104 oC when being given the lowest power of 5.83 W. On the other hand, it can be seen that under the width of 6 mm for graphene/PI substrate was achieved the highest temperature of 110 oC when being given the power of 6.10 W. And then, the same design width for graphene/silver nanoparticles/PI substrate was achieved the highest temperature of 113 oC when being given the lowest power of 4.48 W. Furthermore, the experimental results demonstrated that the electrode structure with 6 mm width electrode on the graphene/nano-silver/PI substrate was the highest temperature over 100 oC with the lowest power, in which the temperature of its device substrate can still be maintained at 100 oC when it was bent at 90 o. Simultaneously, this study was used the interdigitated electrode structure for gas detection. The results showed that when the concentration of nitric oxide (NO) is 650 ppm, the resistance value of electrode-structure device can be raised from 78 to 85 (the gas response value wss approximately 9 %). The experimental results showed that the value of gas response will increase as the gas concentration increases.
[1] J. Lelieveld, J.S. Evans, M. Fnais, D. Giannadaki, A. Pozzer, “The contribution of outdoor air pollution sources to premature mortality on a global scale”, Nature, Vol:525, pp. 367 (2015).
[2] “Laser Technology Market and Patent Landscape Report – 2025”, AheadIntel.
[3] E. B. Lee, I. S. Hwang, J. H. Cha, H. J. Lee, W. B. Lee, J. J. Pak, J. H. Lee, B. K. Ju, “Micromachined catalytic combustible hydrogen gas sensor”, Sensors and Actuators B: Chemical, Vol:153, pp. 392-397 (2011).
[4] M. D. Brown, M. H. Schoenfisch, “Electrochemical nitric oxide sensors: principles of design and characterization”, Chemical Reviews, 119, pp. 11551-11575(2019).
[5] P. Tardy, J. R. Coulon, C. Lucat, F. Menil, “Dynamic thermal conductivity sensor for gas detection”, Sensors and Actuators B: Chemical, Vol:98, pp. 63-68 (2004).
[6] G. Zhang, Y. Li, Q. Li, “A miniaturized carbon dioxide gas sensor based on infrared absorption”, Optics and Lasers in Engineering, Vol:48, pp. 1206-1212 (2010).
[7] G. Sberveglieri, “Recent developments in semiconducting thin-film gas sensors”, Sensors and Actuators B: Chemical, Vol:23, pp. 103-109 (1995).
[8] V. S. Bhatia, M. Hojamberdiev, M. Kumar,“Enhanced sensing performance of ZnO nanostructures-based gas sensors: A review”, Energy Reports, Vol:6, pp. 46-62 (2020).
[9] W. Göpel, K. D. Schierbaum, “SnO2 sensors: current status and future prospects”, Sensors and Actuators B: Chemical, Vol:26, pp. 1-12 (1995).
[10] C. Dong, R. Zhao, L. Yao, Y. Ran, X. Zhang, Y. Wang, “A review on WO3 based gas sensors: Morphology control and enhanced sensing properties”, Journal of Alloys and Compounds, Vol:820, pp. 153194 (2020).
[11] Z. Li, Z. J. Yao, A. A. Haidry, T. Plecenik, L. J. Xie, L. C. Sun, Q. Fatima, “Resistive-type hydrogen gas sensor based on TiO2: A review”, International Journal of Hydrogen Energy, Vol:43, pp. 21114-21132 (2018).
[12] J. Rombach, O. Bierwagen, A. Papadogianni, M. Mischo, V. Cimalla, T. Berthold, S. Krischok, M. Himmerlich, “Electrical conductivity and gas-sensing properties of mg-doped and undoped single-crystalline In2O3 thin films: bulk vs. surface”, Biosensors and Bioelectronics, Vol:103, pp. 113-129 (2018).
[13] A. R. Bhashyam, M. T. Wolf, A. L. Marcinkowski, A. Saville, K. Thomas, J. A. Carcillo, T. E. Corcoran, “Aerosol delivery through nasal cannulas: an in vitro study”, Journal of Aerosol Medicine and Pulmonary Drug Delivery, Vol:2008, pp. 181-188 (2008)
[14] J. W. Gardner, A. Pike, N. F. de Rooij, M. Koudelka-Hep, P. A. Clerc, A. Hierlemann, W. Göpel, “Integrated array sensor for detecting organic solvents”, Sensors and Actuators B: Chemical, Vol:26, pp.135-139 (1995)
[15] C. L. Dai,“A capacitive humidity sensor integrated with micro heater and ring oscillator circuit fabricated by CMOS–MEMS technique”, Sensors and Actuators B: Chemical, Vol:122, pp.375-380 (2007)
[16] G. Maduraiveeran, M. Sasidharan, V. Ganesan, “Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications”, International Journal of Hydrogen Energy, Vol:43, pp. 21114-21132 (2018).
[17] S. Jiang, Y. Liu, “Gas sensors for volatile compounds analysis in muscle foods: A review”, TrAC Trends in Analytical Chemistry, Vol:126, pp. 115877 (2020).
[18] S. Iguchi, K. Mitsubayashi, T. Uehara, M. Ogawa, “A wearable oxygen sensor for transcutaneous blood gas monitoring at the conjunctiva”, Sensors and Actuators B: Chemical, Vol:108, pp. 733-737 (2005).
[19] 謝孟玹,產業技術評析偵測PM2.5與空氣污染的關鍵之鑰-氣體感測器,經濟部技術處 (2015).
[20] G. Korotcenkov, “Metal oxides for solid-state gas sensors: What determines our choice?”, Materials Science and Engineering: B, Vol:139, pp. 1-23 (2007).
[21] E. Vinoth, N. Gopalakrishnan, “Fabrication of interdigitated electrode (IDE) based ZnO sensors for room temperature ammonia detection”, Journal of Alloys and Compounds, Vol:824, pp. 153900 (2020).
[22] J. O. Maclean, C. Tangkijcharoenchai, S. Coomber, K. T. Voisey, “Laser drilling of micro-holes in single crystal silicon, indium phosphide and indium antimonide using a continuous wave (CW) 1070 nm fibre laser with millisecond pulse widths”, Procedia CIRP, Vol:74, pp. 407-412 (2018).
[23] A.H. Khan, S. Celotto, L. Tunna, W. O’Neill, C. J. Sutcliffe,“Influence of microsupersonic gas jets on nanosecond laser percussion drilling”, Optics and Lasers in Engineering, Vol:45, pp. 709-718 (2007).
[24] Z. Wanqin, S. Xiaowei, L. Haodong, W. Lingzhi, J. Haitao, “Effect of high repetition rate on dimension and morphology of micro-hole drilled in metals by picosecond ultra-short pulse laser”, Optics and Lasers in Engineering, Vol:124, pp. 105811 (2020).
[25] T. Kuilla, S. Bhadra, D. Yao, N. H. Kim, S. Bose, J. H. Lee, “Recent advances in graphene based polymer composites”, Progress in Polymer Science, Vol:35, pp. 1350-1375 (2010).
[26] Y. W. Zhu, S. Murali, W. W. Cai, X. S. Li, J. W. Suk, J. R. Potts, “Graphene and graphene oxide: Synthesis, properties, and applications”, Advanced Materials, Vol:22, pp. 5226 (2010).
[27] 60 Uses of Graphene – The Ultimate Guide to Graphene’s (Potential) Applications in 2019, Nanografi Nano Technology, Online.
[28] R. Ma, Y. Zhou, H. Bi, M. Yang, J. Wang, Q. Liu, F. Hua, “Multidimensional Graphene Structures and Beyond: Unique Properties, Syntheses and Applications”, Progress in Materials Science, Vol : 113, pp. 100665 (2020).
[29] M. Lim, H. J. Kim, E. H. Ko, J. Choi, H. K. Kim, “Ultrafast laser-assisted selective removal of self-assembled Ag network electrodes for flexible and transparent film heaters”, Journal of Alloys and Compounds, Vol: 688, pp. 198-205 (2016)
[30] M. Lv, J. Liu, S. Wang, J. Ai, X. Zeng, “Higher-resolution selective metallization on alumina substrate by laser direct writing and electroless plating”, Applied Surface Science, Vol: 366, pp. 227-232 (2016)
[31] W. Zhang, Z. Shi, C. Chen, X. Yang, L. Yang, Z. Zeng, B. Zhang, Q. Liu, “Super-resolution GaAs nano-structures fabricated by laser direct writing”, Materials Science in Semiconductor Processing, Vol:84, pp. 119-123 (2018).
[32] D. H. Kam, J. Kim, J. Mazumder, “Near-IR nanosecond laser direct writing of multi-depth microchannel branching networks on silicon”, Journal of Manufacturing Processes, Vol:35, pp. 99-106 (2018).
[33] S. Xu, L. Ren, B. Liu, J. Wang, B. Tang, W. Zhou, L. Jiang, “Single-step selective metallization on insulating substrates by laser-induced molten transfer”, Applied Surface Science, Vol: 454, pp. 16-22 (2018)
[34] I. B. Sohn, H. K. Choi, D. Yoo, Y. C. Noh, J. Noh, M. S. Ahsan, “Three-dimensional hologram printing by single beam femtosecond laser direct writing”, Applied Surface Science, Vol: 427, pp. 396-400 (2018).
[35] M. Lim, H. J. Kim, E. H. Ko, J. Choi, H. K. Kim, “Femtosecond-laser direct-writing volume phase gratings inside Ge–As–S chalcogenide glass”, Ceramics International, Vol: 46, pp. 17599-1760 (2020).
[36] T. Y. Zhang, H. M. Zhao, D. Y. Wang, Q. Wang, Y. Pang, N. Q. Deng, H. W. Cao, Y. Yang, T. L. Ren, “A super flexible and custom-shaped graphene heater”, Nanoscale, Vol: 9, pp. 14357-14363 (2017).
[37] S. Y. Lin, T. Y. Zhang, Q. Lu, D. Y. Wang, Y. Yang, X. M. Wu, T. L. Ren, “High-performance graphene-based flexible heater for wearable applications”, RSC Advances, Vol: 7, pp. 27001-27006 (2017).
[38] M. R. Bobinger, F. J. Romero, A. S. Castillo, M. Becherer, P. Lugli, D. P. Morales, N. Rodríguez, A. Rivadeneyra, “Flexible and robust laser-induced graphene heaters photothermally scribed on bare polyimide substrates”, Carbon, Vol:144, pp. 116-126(2019).
[39] K. Lee, D. H. Baek, J. Choi, J. Kim, “Suspended CoPP-ZnO nanorods integrated with micro-heaters for highly sensitive VOC detection”, Sensors and Actuators B: Chemical, Vol:264, pp. 249-254(2018).
[40] T. J. Hsueh, C. H. Peng, W. S. Chen, “A transparent ZnO nanowire MEMS gas sensor prepared by an ITO micro-heater”, Sensors and Actuators B: Chemical, Vol:304, pp. 127319(2020).
[41] F. Yan, G. Shen, X. Yang, T. Qi, J. Sun, X. Li, M. Zhang, “Low operating temperature and highly selective NH3 chemiresistive gas sensors based on Ag3PO4 semiconductor”, Applied Surface Science, Vol:479, pp. 1141-1147 (2019).
[42] S. Li, L. Xie, M. He, X. Hu, G. Luo, C. Chen, Z. Zhu, “Metal-Organic frameworks-derived bamboo-like CuO/In2O3 Heterostructure for high-performance H2S gas sensor with Low operating temperature”, Sensors and Actuators B: Chemical, Vol:310, pp. 127828 (2020).
[43] V. Haridas, A.Sukhananazerin, J. M. Sneha, B. Pullithadathil, B. Narayanan, “-Fe2O3 loaded less-defective graphene sheets as chemiresistive gas sensor for selective sensing of NH3”, Applied Surface Science, Vol:517, pp. 146158 (2020).
[44] L. Zhou, R. Qian, S. Zhuo, Q. Chen, Z. Wen, G. Li, “Oximation reaction induced reduced graphene oxide gas sensor for formaldehyde detection”, Journal of Saudi Chemical Society, Vol: 24, pp. 364-373 (2020).
[45] G. Pal, A. Dutta, K. Mitra, M.S. Grace, A. Amat, T. B. Romanczyk, X.J. Wu, K. Chakrabarti, J. Anders, E. Gorman, R. W. Waynant, D. B. Tata, “Effect of low intensity laser interaction with human skin fibroblast cells using fiber-optic nano-probes”, Journal of Photochemistry and Photobiology B, Vol : 86, pp. 252-261 (2007)
[46] T. L. Chang, Z. C. Chen, W. Y. Chen, H. C. Han, S. F. Tseng, “Patterning of multilayer graphene on glass substrate by using ultraviolet picosecond laser pulses”, Microelectronic Engineering, Vol : 158, pp. 1-5 (2016).
[47] 張天立,鄧敦建,國立臺灣師範大學雷射工程技術與應用課程講義 (2018).
[48] W. Pacquentin, N. Caron, R. Oltra, “Nanosecond laser surface modification of AISI 304L stainless steel: Influence the beam overlap on pitting corrosion resistance”, Applied Surface Science, Vol : 288, pp. 34-39 (2014).
[49] T. L. Chang, Z. C. Chen, S. F. Tseng, “Laser micromachining of screen-printed graphene for forming electrode structures”, Applied Surface Science, Vol : 374, pp.305-311 (2016).
[50] I. Byun, R. Ueno, B. Kim, “Micro-heaters embedded in PDMS fabricated using dry peel-off process,” Microelectronic Engineering, Vol : 121, pp. 1-4 (2014).
[51] J. E. An, Y. G. Jeong, “Structure and electric heating performance of graphene/epoxy composite films”, European Polymer Journal, Vol : 49, pp. 1322-1330 (2013).
[52] J. Yan, Y. G. Jeong, “Highly elastic and transparent multiwalled carbon nanotube/polydimethylsiloxane bilayer films as electric heating materials”, Materials and Design, Vol : 86, pp. 72-79 (2015).