簡易檢索 / 詳目顯示

研究生: 莊菁雯
Ching-Wen Chuang
論文名稱: 血管加壓素對大白鼠舌下神經呼吸活動的影響
The effect of vasopressin on respiratory-related hypoglossal nerve activity in rats
指導教授: 黃基礎
Hwang, Ji-Chuu
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 1-51
中文關鍵詞: 血管加壓素舌下神經延腦腹外側
英文關鍵詞: Vasopressin, hypoglossal nerve, ventrollateral medulla
論文種類: 學術論文
相關次數: 點閱:168下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    本研究的目的是想探討血管加壓素(arginine vasopressin; AVP)作用在延腦腹外側對膈神經及舌下神經呼吸活動的影響。
    採用大白鼠為實驗動物,體重250-300克,雄性為主,以urethane (1.2 g/kg )腹腔麻醉,進行氣管切開術,股靜脈及股動脈插管,由靜脈插管給予麻痺劑(gallamine triethiodide 5 mg/kg)後,接上人工呼吸器,維持呼氣末的二氧化碳濃度在0.04(FETCO2 = 0.04),分離並記錄膈神經與舌下神經的活動。
    以微量注射(microinjection)的技術,注射AVP到大白鼠延腦腹外側(ventrolateral medulla; VLM),同時觀察膈神經(phrenic nerve)及舌下神經(hypoglossal nerve)呼吸活動的變化。實驗結果發現因注射位置的不同,出現兩種不同類型的生理反應。
    第一型反應,注射1.5x10-8 IU和3.0x10-8 IU的AVP到VLM內側,膈神經活動分別停止了3.24秒及5.28秒(p < 0.05),恢復後第一次呼吸週期的高度分別降低為刺激前75.61 % 及58.21 % (p < 0.01);舌下神經吸氣活動高度分別降低為刺激前68.92 % 及46.45 % (p < 0.01),血壓沒有變化。
    第二型反應,注射3.0x10-8 IU的AVP至VLM外側,膈神經暫停4.22秒(p < 0.05),恢復後第一次呼吸週期平均高度降低為刺激前63.71 %;舌下神經吸氣活動高度降低為刺激前80.00 %,血壓上升。
    提高呼氣末二氧化碳濃度至0.08(FETCO2 = 0.08)會減弱AVP的影響,1.5x10-8 IU 的AVP興奮VLM內側後,膈神經停止3.03秒,恢復後,第一次呼吸週期平均高度降低為刺激前85.19 % (p < 0.01),在3.0x10-8 IU作用下,膈神經暫停5.16秒,第一次呼吸週期平均高度降低為刺激前70.94 % (p < 0.01);在這兩種劑量下,舌下神經吸氣活動平均高度分別降低為刺激前88.70% 及74.00 % (p < 0.01)。第二型反應,以3.0x10-8 IU興奮VLM外側後,膈神經停止2.95秒,第一次呼吸週期平均高度為刺激前93.97 %,舌下神經則降低為88.99 %。
    這些結果表示AVP可能藉著作用於VLM的神經元而影響膈神經與舌下神經吸氣活動,進而調節呼吸作用及上呼吸道的暢通。

    英文摘要
    The purpose of the present study was to examine the influence of the arginine vasopressin (AVP) on respiratory-related hypoglossal activity in rats. The rat was anesthetized by urethane (1.2 g/kg, i.p.).Tracheotomy, and catheterization of the femoral artery and vein were performed. The animal was then paralyzed with gallamine triethiodide (5 mg/kg) and ventilated artificially. End-tidal fractional concentration of gas was maintained at normocapnia in hyperoxia. Activities of both the phrenic and hypoglossal nerves were monitored
    Arginine vasopressin (AVP) was microinjected into a specific area of the ventrolateral medulla (VLM) to evaluate the response of the phrenic and the hypoglossal nerve. There were two types of response with AVP administration. In type I response, activities of the phrenic nerve (PNA) and the hypoglossal nerve (HNA) showed apnea and then recovered gradually. Mean period of apnea in response to low dose (1.5x10-8 IU) and high dose (3.0x10-8 IU) of AVP was 3.24 and 5.28 seconds respectively (p < 0.05) . Average PNA of the first neurogram after recovery from AVP treatment with low and high dose was 75.61 % and 58.21 % (p < 0.01) while HNA was 68.92 % annd 46.45 % of control. Blood pressure was unchanged. In type II response, mean period of apnea with a dosage of 3.0x10-8 IU was 4.22 seconds (p < 0.05). Average PNA of the first neurogram flowing AVP administration was 63.71 % of control whereas HNA was 80 %.These inhibitions of AVP upon PNA and HNA were attenuated by hypercapnia. Thus PNA was reduced to 85.19 % and 70.94 % of control in type I response whereas to 93.97 % of control in type II response. HNA was 88.70 % and 74.00 % of contral in type I response but to 88.99 % in type II response.
    These results suggest that AVP may play a role in the modulation of respiration and upper airway patency by direct action upon the neurons in the VLM.

    目 錄 誌謝 縮寫表...................... i 中文摘要....................ii 英文摘要..................iv 壹、緒論..................... 1 一、延腦腹外側................. 1 (ㄧ)解剖位置................. 1 (二)延腦腹外側呼吸神經群的特性與功能..... 2 二、舌下神經.................. 4 (ㄧ)舌下神經的解剖位置與功能......... 4 (二)舌下神經與腦部其他核區之神經聯繫..... 5 (三)舌頭肌肉在呼吸活動上的重要性....... 5 (四)舌下神經具呼吸節奏............ 6 三、血管加壓素................. 7 四、研究目的.................. 8 貳、材料與方法.................. 10 一、動物的準備.................. 10 (ㄧ)一般手術.................. 10 (二)神經分離與記錄............... 10 二、刺激方法.................. 11 (ㄧ)刺激點.................. 11 (二)微量注射................. 11 三、實驗設計.................. 11 四、組織切片鑑定法............... 12 五、結果分析與統計測試............. 12 (一)神經活動之分析.............. 12 (二)呼吸週期變化的分析............ 12 (三)血壓的計算................ 12 (四)統計方法................. 13 參、結果..................... 14 一、glu作用於VLM對呼吸和血壓的影響...... 14 二、AVP作用於VLM對呼吸和血壓的影響...... 15 (ㄧ)AVP作用於VLM的特定區域........ 15 (二)AVP作用的時間與劑量效應......... 17 (三)呼吸形態的變化.............. 19 (四)血壓的反應................ 20 三、高二氧化碳會減弱AVP的效應........ 20 (一)膈神經呼吸活動的反應........... 20 (二)舌下神經的反應.............. 21 (三)呼吸頻率的變化.............. 22 肆、討論..................... 23 一、微量注射技術的檢討............. 23 二、AVP作用的區域............... 25 三、AVP對膈神經呼吸活動的影響........... 26 四、AVP對舌下神經呼吸活動的影響.......... 29 五、二氧化碳濃度增加會減弱AVP對神經呼吸活動的影 響.................... 31 六、AVP對血壓的影響............... 32 伍、結論..................... 34 陸、參考文獻................... 35 柒、圖片與說明.................. 40

    參考文獻
    Agarwal, S. K., and F. R. Calaresu. Reciprocal connections between nucleus tractus solitarii and rostral ventrolateral medulla. Brain Res. 523: 305-308, 1990.
    Alescio-Lautier, B., V. Paban, and B. Soumireu-Mourat. Neuromodulation of memory in the hippocampus by vasopressin. Eur. J. Pharmacol. 405: 63-72, 2000.
    Amri M., A. Car, and C. Roman. Axonal branching of medulla swallowing neurons projecting on the trigeminal and hypoglossal motor nuclei demonstration by electrophysiological and fluorescent double labeling techniques. Exp. Brain Res. 81: 384-390, 1990.
    Berger, A. J., D. A. Bayliss, and F. Viana. Development of hypolglossal motoneurons. J. Appl.Physiol. 81(3): 1039-1048, 1996.
    Bianchi, A. L., M. Denavit-Saubi&eacute;, and J. Champagnat. Central control of breathing in mammals: neuronal circuitry, membrane properties, and neurotransmitters. Physiol. Rev. 75(1): 1-45, 1995.
    Brown, D. L. and P. G. Guyenet. Electrophysiological study of cardio- vascullar neurons in the rostral ventrolateral medulla in rats. Circ. Res. 56: 359-369, 1985.
    Chitravanshi, V. C., and H. N. Sapru. Phrenic nerve responses to chemical stimulation of the subregions of ventral medullary respiratory neuronal group in the rat. Brain Res. 821: 443-460, 1999.
    Dunnett, C. W. New tables for multiple comparisions with a control. Biometrics 20: 482-491, 1964.
    Ezure K. Synaptic connections between medullary respiratory neurons and considerations on the genesis of rspiratory rhythm. Prog Neurobiol. 35: 429-450, 1990.
    Fung, S. J., J. Yamuy, M.-C. Xi, J. K. Engelhardt, F. R. Morales, and M. H. Chase. Changes in electrophysiological properties of cat hypoglossal motoneurons during carbachol-induced motor inhibition. Brain Res. 885: 262-272, 2000.
    Gayt&aacute;n S. P., and R. P&aacute;saro. Connections of the rostral ventral respiratory neuronal cell group: an anterograde and retrograde tracing study in the rat. Brain Res. Bull. 47(6): 625-642, 1998.
    Goding, G. S., D. W. Eisele, R. Testerman, P. L. Smith, K. Roertgen, and A. R. Schnartz. Relief of upper airway obstruction with hypoglossal nerve stimulation in the canine. Laryngoscope. 108: 162-169, 1998.
    Haper, R. M., and E. K. Sauerland. The role of the tongue in sleep apnea. In “Sleep Apnea Syndromes”. Edited by Guilleminault, C. and W. Dement. Alan R Liss Inc, 1978.
    Hwang, J.-C., W. M. St. John, and D. Bartlett, Jr. Respiratory-related hypoglossal nerve activity: influnce of anesthetics. J. Appl. Physiol. 55(3): 785-792, 1983.
    Hwang, J.-C., and S.-B. Young. Influences of airflow in the upper airway upon phasic hypolossal and phrenic activities: afferent pathways. Chinese J. Physiol. 32(1): 1-12, 1989.
    Hwang, J.-C., and W. M. St. John. Alterations of hypoglossal motoneuronal activities during pulmonary inflations. Exp. Neurol. 97: 615-625, 1987.
    Hwang, J.-C., C. K. Su, C.-T. Yen, and C. Y. Chai. Pressence of neuronal cell bodies in the sympathetic pressor areas of dorsal and ventrolateral medulla inhibiting phrenic nerve discharge in cats. Clin. Auton. Res. 2: 189-196, 1992.
    Kuna, S. T., and J. E. Remmers. Premotor input to hypoglossal motoneurons from K&ouml;lliker-Fuse neurons in decerebrate cats. Respir. Physiol. 117: 85-95, 1999.
    Leng G., C. H. Brown, and J. A. Russell. Physiological pathways regulating the activity of magnocellular neurosecretory cells. Prog. Neurobiol. 57: 625-655, 1999.
    Lipski, J., M. C. Bellingham, M. J. West, and P. Pilowsky. Limitations of the techniqe of excitatory amine acid for the CNS. J. Neurosci. Methods. 26: 169-179, 1988.
    McCrimmon, D. R., A. Monnier, F. Hayashi, and E. J. Zuperku. Pattern formation and rhythm generation in the ventral respiratory group. Exp. Pharmacol. and Physiol. 27: 126-131,
    2000.
    Miller, A. D., S. Nonaka, M. S. Siniaia, and J. Jakuš. Multifunctional ventral respiratory group: bulbospinal expiratory neurons play a role in pudendal discharge during vomiting. J. Auton. Nerv. Syst. 54: 253-260, 1995.
    Millhorn, D. E., F. L. Eldridge, and T. G. Waldrop. Effect of medullary area I(s) cooling on responses to chemoreceptor input. Respir. Physiol. 49: 23-39, 1982.
    Nattie, E. CO2, Brainstem chemoreceptors and breathing. Prog. Neurobiol. 59: 299-331, 1999.
    Nattie, E. E., A. Li., and W. M. St. John. Lesions in retrotrapezoid nucleus decrease ventilatory output in anesthetized or decerebrate cats. J. App. Physiol. 71: 1364-1325, 1993.
    Nattie, E. E., and A. Li. Fluorescence location of RVLM kainate microinjections that alter the control of breathing. J. App. Physiol. 68: 33-41, 1990a.
    Nattie, E. E., and A. Li. Fluorescence location of RVLM kainate microinjections that alter the control of breathing. J. App. Physiol. 68(3): 1157-1166, 1990b.
    Ono, T., Y. Ishiwata, T. Kuroda, and Y. Nakamura. Swallowing-related perihypoglossal neurons projecting to hypoglossal motoneurons in the cat. J. Dent. Res. 77(2): 351-360, 1998.
    Paxinous G. and C. Watson. The rat brain in stereotaxic coordinates 2 nd ed. Academic Press Inc. 1986.
    Peever, J. H., G. F. Tian, and J. Duffin. Temperature and pH affect respiratory rhythm of in-vitro preparations from neonatal rats. Respir.Physiol. 117: 97-107, 1999.
    Ramirez, J. M., S. W. Schwarzacher, O. Pierrefiche, B. M. Olivera, and D. W. Richter. Selective lesioning of the cat pre-B&ouml;tzinger Complex in vivo eliminates breathing but not gasping. J. Physiol. 507: 895-907, 1998.
    Rekling, J. C., and J. L. Feldman. PreB&ouml;tzinger complex and pacemaker neurons: hypothesized site and kernel for respiratory rhythm generation. Annu. Rev. Physiol. 60: 385-405, 1998.
    Rekling, J. C. Excitatory effects of thyrotropin-releasing hormone (TRH) in hypoglossal motoneurones. Brain Res. 510: 175-179, 1990.
    Richmonds, C. R., and D. W. Hudgel. Hypoglossal and phrenic motoneuron responses to serotonergic active agents in rats. Respir. Physiol. 106: 153-160, 1996.
    Schl&auml;fke, M. E. Central chemosensitivity : a respiratory drive. Rev. Physiol. Biochem. Pharmac. 90: 171-172, 1981.
    Schwarzacher, S. W., J. C. Smith, and D. W. Richter. Pre-B&ouml;tzinger complex in the cat. J. Neurophysiol. 73(4): 1452-1461, 1995.
    Selvaratnam, S. R., M. A. Parkis, and G. D. Funk. Developmental modulation of mouse hypoglossal nerve inspiratory output in vitro by noradrenergic receptor agonists. Brain Res. 805: 104-115, 1998.
    Shioda, S., M. Iwase, I. Homma, S. Nakajo, and K. Nakaya, and Y. Nakai. Vasopressin neuron activation and Fos expression by stimulation of the caudal ventrolateral medulla. Brain Res. Bull. 45(5): 443-450, 1998.
    Smith, J. C., H. H. Ellenberger, K. Ballanyi, D. W. Richter, and J. L. Feldman. Pre-B&ouml;tzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science. 25:726-729, 1991.
    Sun, Q.-J., A. K. Goodchild, J. P. Chalmers, and P. M. Pilowsky. The pre-B&ouml;tzinger complex and phase-spanning neurons in the adult rat. Brain Res. 809: 204-213, 1998.
    Tribollet, E., Y. Arsenijeuc, and C. Barberis. Vasopressin binding sites in the central nervous system: distribution and regulation. Progr. Brain Res. 119: 45-55, 1998.
    Walker, J. k. L., and D. B. Jennings. Angiotensin mediates stimulation of ventilation after vasopressin V1 receptor blockade. J. Appl. Physiol. 76(6): 2517-2526, 1994.
    Walker J. K. L., and D. B. Jennings. Ventilatory effects of angiotensin and vasopressin in conscious rats. Can. J. Physiol. Pharmacol. 74: 1258-1264, 1996.
    Wallenstein, S., C. L. Zucker, and J. L. Fleiss. Some statistical methods useful in circulation research. Circ. Res. 47(1): 1-9, 1980.
    Yamuy, J., S. J. Fung, M. Xi, F. R. Morales, and M. H. Chase. Hypoglossal motoneurons are postsynaptically inhibited during carbachol-induced rapid eye movement sleep. Neuroscience. 94: 11-15, 1999.
    Zar, J. H. Biostetistical analysis 2nd Ed. Prentice-Hall, Inc. Englewood Cliffs, N. J. 1984.
    Zerihum, L. and M. Harris. An electrophysiological analysis of caudally-projecting neurons from the hypothalamic paraventricular nucleus in the rat. Brain Res. 261: 13-20, 1983.
    黃基礎和陳素滿 血管加壓素對大白鼠機制機械特性之影響。師大生物學報 12:15-22. 1977。

    QR CODE