簡易檢索 / 詳目顯示

研究生: 葉佳峯
Yeh, Jia-Fong
論文名稱: 以mL-SHADE演算法求解單目標實數最佳化問題
Solving Single-Objective Real-Parameter Optimization Problems Using mL-SHADE Algorithm
指導教授: 蔣宗哲
Chiang, Tsung-Che
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 61
中文關鍵詞: 演化演算法單目標實數最佳化問題自適應控制
英文關鍵詞: L-SHADE
DOI URL: http://doi.org/10.6345/NTNU201900462
論文種類: 學術論文
相關次數: 點閱:219下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來演化演算法被廣泛應用於求解問題,在現實世界中有許多問題可以用單目標實數最佳化問題來表示。此類型的問題在生活中隨處可見,例如電力調度使成本最小化問題、水資源分配問題。許多事都能用以此類型的問題來思考,尤其現實世界的問題處在的環境變化大,通常我們需要在短時間內就要求得一個良好的解,因此如何設計出有效率且效能好的演化演算法一直都是被研究者關注的重要議題。
    本研究基於當今主流的L-SHADE 演算法,探討它自適應控制參數的方法並提出變體—mL-SHADE 求解單目標實數最佳化問題。在mL-SHADE演算法中移除了終止符號的設置,使演算法不會過早收斂;調整了CR值的修復方法,增加高斯分佈產生隨機值的效率;加入記憶體擾動機制,避免族群與記憶體長久未更新造成惡性循環;最後線性提升柯西分佈的尺度參數,使得在演化後期產生隨機值能夠較常選到離平均值較遠的數值。另外,本研究也探討族群多樣性的偵測與維護機制,從族群目前的狀態資訊提供演算法調整演化方向。實驗結果顯示mL-SHADE演算法所採用的機制與調整能夠有效的改善演算法效能。

    中文摘要 i 致謝 ii 目錄 iii 附表目錄 v 附圖目錄 vi 第一章 緒論 1 1.1 研究動機 1 1.2 單目標實數最佳化問題定義 2 1.3 差分演化演算法 2 1.3.1 解個體編碼與評估 3 1.3.2 初始化解個體 3 1.3.3 突變策略 4 1.3.4 交配策略 5 1.3.5 選擇策略 6 1.3.6 差分演化演算法流程 7 1.4 研究目的與方法 8 1.5 論文架構 8 第二章 文獻探討 9 2.1 進階突變策略方法 9 2.2 參數控制方法種類 12 2.2.1 確定性參數控制法 12 2.2.2 適應性參數控制法 14 2.2.3 自適應參數控制法 19 第三章 mL-SAHDE演算法演變歷程 20 3.1 L-SHADE演算法 20 3.1.1 基因修復方法 20 3.1.2 控制參數機制—記憶體系統 21 3.1.3 線性縮減族群大小 24 3.1.4 L-SHADE 演算法流程 26 3.2 mL-SHADE演算法 27 3.2.1 移除CR值終止符號機制 27 3.2.2 調整CR值修復機制 28 3.2.3 設置記憶體擾動機制 29 3.2.4 線性調整柯西分佈尺度參數 30 3.2.5 mL-SHADE 演算法流程 31 3.3 族群多樣性與維護機制 33 第四章 實驗設計與結果 35 4.1 測試函式與效能指標 35 4.2 mL-SHADE演算法參數設定 38 4.3 mL-SHADE演算法成分分析 39 4.3.1 加入移除終止符號 40 4.3.2 加入修改修復規則 42 4.3.3 加入記憶體擾動 44 4.3.4 加入線性調整尺度參數 47 4.4 族群多樣性實驗探討 50 4.5 比較 mL-SAHDE演算法與文獻演算法 51 4.5.1 文獻演算法列表 51 4.5.2 文獻演算法參數設定與調整 51 4.5.3 mL-SHADE 演算法與文獻演算法比較結果 52 4.6 mL-SAHDE演算法在CEC 2019 100-Digit Challenge的結果 53 第五章 結論與未來研究方向 56 參考文獻 57 附錄 60

    [1] Wikipedia—Evolutionary Computation, url : https://en.wikipedia.org/wiki/Evolutionary_computation
    [2] M. A. Abido, “Environmental/economic power dispatch using multiobjective evolutionary algorithms,” 2003 IEEE Power Engineering Society General Meeting, pp. 920-925, 2003.
    [3] O. B. Haddad, A. Afshar and M. A. Mariño, “Honey-Bees Mating Optimi-zation (HBMO) Algorithm: A New Heuristic Approach for Water Re-sources Optimization,” Water Resources Management, vol. 20, pp. 661–680, 2006.
    [4] R. Storn and K. Price, “Differential Evolution a Simple and Efficient Heuristic for Global Optimization over Continuous Spaces,” Global Optimization, vol. 11, no. 4, pp. 341–359, 1997.
    [5] R. Tanabe, and A. S. Fukunaga, “Improving the Search Performance of SHADE Using Linear Population Size Reduction,” in IEEE CEC, pp. 1658–1665, 2014.
    [6] E. Mezura-Montes, J. Velázquez-Reyes and C. A. C. Coello, “A Comparative Study of Differential Evolution Variants for Global Optimization,” in GECCO, pp. 485-492, 2006.
    [7] M. Leon and N. Xiong, “Investigation of Mutation Strategies in Differential Evolution for Solving Global Optimization Problems,” in International Conference on Artificial Intelligence and Soft Computing (ICAISC), pp. 372-383, 2014.
    [8] K. Opara and J. Arabas, “Comparison of mutation strategies in Differential Evolution – A probabilistic perspective,” Swarm and Evolutionary Computation, vol. 39, pp. 53-69, 2018.
    [9] J. Zhang and A. C. Sanderson, “JADE: Adaptive Differential Evolution with Optional External Archive,” IEEE Transactions on Evolutionary Computation, vol. 13, no. 5, pp. 945– 958, 2009.
    [10] R. Tanabe and A. Fukunaga, “Success-History Based Parameter Adaptation for Differential Evolution,” in IEEE CEC, pp. 71–78, 2013.
    [11] S. M. Islam, S. Das, S. Ghosh, S. Roy, and P. N. Suganthan, “An Adaptive Differential Evolution Algorithm with Novel Mutation and Crossover Strategies for Global Numerical Optimization,” IEEE Transactions on SMC. B, vol. 42, no. 2, pp. 482–500, 2012.
    [12] A. W. Mohamed and A. K. Mohamed, “Adaptive Guided Differential Evolution Algorithm with Novel Mutation for Numerical Optimization,” International Journal of Machine Learning and Cybernetics, vol. 10, pp. 253-277, 2019.
    [13] A. W. Mohamed and A. S. Almazyad, “Differential Evolution with Novel Mutation and Adaptive Crossover Strategies for Solving Large Scale Global Optimization Problems,” Applied Computational Intelligence and Soft Computing, vol. 2017, Article ID 7974218, 18 pages, 2017.
    [14] A. E. Eiben, R. Hinterding and Z. Michalewicz, “Parameter control in evolutionary algorithms,” IEEE Transactions on Evolutionary Computation, vol. 3, no. 2, pp. 124-141, 1999.
    [15] R. Tanabe and A. Fukunaga, “Reviewing and Benchmarking Parameter Control Methods in Differential Evolution,” IEEE Transactions on Cybernetics, doi: 10.1109/TCYB.2019.2892735, 2019.
    [16] S. Das, A. Konar, and U. K. Chakraborty, “Two Improved Differential Evolution Schemes for Faster Global Search,” in GECCO, pp. 991– 998, 2005.
    [17] Y. Wang, Z. Cai, and Q. Zhang, “Differential Evolution with Composite Trial Vector Generation Strategies and Control Parameters,” IEEE Transactions on Evolutionary Computation, vol. 15, no. 1, pp. 55–66, 2011.
    [18] S. Das, A. Ghosh, and S. S. Mullick, “A Switched Parameter Differential Evolution for Large Scale Global Optimization – Simpler May Be Better,” in MENDEL, pp. 103–125, 2015.
    [19] J. Liu and J. Lampinen, “A Fuzzy Adaptive Differential Evolution Algorithm,” Soft Computing., vol. 9, no. 6, pp. 448–462, 2005.
    [20] J. Brest, S. Greiner, B. Bošković, M. Mernik, and V. Žumer, “Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 6, pp. 646–657, 2006.
    [21] A. K. Qin and P. N. Suganthan, “Self-adaptive Differential Evolution Algorithm for Numerical Optimization,” in IEEE CEC, pp. 1785-1791, 2005.
    [22] J. Tvrdık, “Competitive Differential Evolution,” in MENDEL, pp. 7–12, 2006
    [23] J. Brest, M. S. Maučec, and B. Bošković, “Single Objective Real-Parameter Optimization: Algorithm jSO,” in IEEE CEC, pp. 1311–1318, 2017.
    [24] N. H. Awad, M. Z. Ali, P. N. Suganthan and R. G. Reynolds, “An ensemble sinusoidal parameter adaptation incorporated with L-SHADE for solving CEC2014 benchmark problems,” in IEEE CEC, pp. 2958-2965, 2016.
    [25] N. H. Awad, M. Z. Ali, P. N. Suganthan, and R.G. Reynolds, “Ensemble Sinusoidal Differential Covariance Matrix Adaptation with Euclidean Neighborhood for Solving CEC2017 Benchmark Problems,” in IEEE CEC, pp. 372-379, 2017.
    [26] M. G. H. Omran, A. A. Salman, and A. P. Engelbrecht, “Self-adaptive Differential Evolution,” in CIS, pp. 192–199, 2005.
    [27] G. Corriveau, R. Guilbault, A. Tahan and R. Sabourin, “Review and Study of Genotypic Diversity Measures for Real-Coded Representations,” IEEE Transactions on Evolutionary Computation, vol. 16, no. 5, pp. 695-710, 2012.
    [28] IEEE Congress on Evolutionary Computation 2019 website, url : http://cec2019.org/
    [29] CEC 100-Digit Challenge website, url : http://www.ntu.edu.sg/home/epnsugan/index_files/CEC2019/CEC2019.htm
    [30] K. V. Price, N. H. Awad, M. Z. Ali, P. N. Suganthan, “Problem Definitions and Evaluation Criteria for the 100-Digit Challenge Special Session and Competition on Single Objective Numerical Optimization,” Technical Re-port, Nanyang Technological University, Singapore, November 2018.
    [31] The SIAM 100-Digit Challenge, url : http://www-m3.ma.tum.de/m3old/bornemann/challengebook/
    [32] V. Stanovov, S. Akhmedova, and E. Semenkin, “LSHADE Algorithm with Rank-Based Selective Pressure Strategy for Solving CEC 2017 Benchmark Problems,” in IEEE CEC, pp. 1-8, 2018.
    [33] A. Kumar, R. K. Misra, and D. Singh, “Improving the Local Search Capability of Effective Butterfly Optimizer using Covariance Matrix Adapted Retreat Phase,” in IEEE CEC, pp. 1835-1842, 2017.
    [34] G. Zhang and Y. Shi, “Hybrid Sampling Evolution Strategy for Solving Single Objective Bound Constrained Problems,” in IEEE CEC, pp. 1-7, 2018.
    [35] Jia-Fong Yeh, Ting-Yu Chen, and Tsung-Che Chiang, “Modified L-SHADE for Single Objective Real-parameter Optimization,” in IEEE CEC, pp. 373-378, 2019.
    [36] K. V. Price, N. H. Awad, M. Z. Ali and P. N. Suganthan, “The 2019 100-Digit Challenge on Real-Parameter, Single Objective Optimization: Final Report,” Technical Report, in IEEE CEC, 2019.

    下載圖示
    QR CODE