研究生: |
王得權 Wang, Te-Chuan |
---|---|
論文名稱: |
高效能鈷鎳氧硒化物電觸媒應用於水分解與染料敏化太陽能電池 Highly-performanced CoxNiyOmSen Electro-catalyst for Water Splitting and Dye-sensitized Solar Cells |
指導教授: |
李君婷
Li, Chun-Ting |
口試委員: |
李君婷
Li, Chun-Ting 李權倍 Lee, Chuan-Pei 林建村 Lin, Jiann-T'suen |
口試日期: | 2022/07/29 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 59 |
中文關鍵詞: | 染料敏化太陽能電池 、電觸媒 、過渡金屬硒化物 、水分解 |
英文關鍵詞: | Dye-seneitized solar cells, Electro-catalysts, Transition metal selenides, Water splitting |
DOI URL: | http://doi.org/10.6345/NTNU202201609 |
論文種類: | 學術論文 |
相關次數: | 點閱:158 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
便宜且製備簡易的鈷鎳氧硒化物薄膜可成功藉由電沉積法與硒化程序來合成。使用可彎曲的碳布做為基材,成功製造出以一維碳纖維為導電核心,附著性良好的鈷鎳氧硒化物的薄膜為催化外殼的核-殼結構。當前驅鹽中鈷(II)/鈷(II)+鎳(II)的莫爾比增加從0.00到0.17時,鈷鎳氧硒化物顆粒大小下降而使電極表面積提升,讓CC/Co-10表現出對三碘離子最佳的還原能力。使用CC/Co-10當作染料敏化太陽能電池的對電極時,可以達到優異的光電轉換效率10.71%,甚至高於傳統的白金CC/Pt (9.38%)。當持續增加前驅鹽中鈷(II)/鈷(II)+鎳(II)的莫爾比從0.17到0.67,可大幅度增加電極中[Se2−]/[O2−+Se2−]的莫爾比,進而優化CC/Co-40電極於產氫反應(HER)的電催化能力,達到平均過電位(ηavg-HER)為215 mV (vs. RHE)、10 mA cm-2下的過電位為223 mV (vs. RHE)、100 mA cm-2下的過電位為556 mV (vs. RHE)、塔佛斜率為148 mV decade-1。同時CC/Co-40電極
對於產氧反應(OER)也擁有最佳的電催化能力,達到平均過電位(ηavg-OER)為362 mV (vs. RHE)、10 mA cm-2下的過電位為362 mV (vs. RHE)、100 mA cm-2下的過電位為592 mV (vs. RHE)、塔佛斜率為116 mV decade-1;優於常見的CC/RuO2電極(ηavg-OER為392 mV vs. RHE)。經由調整CC/CoxNiyOmSen的化學計量比例,多功能的電催化CoxNiyOmSen材料可以根據三碘離子的還原、產氫、產氧等反應,各別進行材料優化來達到最佳的電化學表現,顯示其應用於不同電化學系統的無限潛力。
Low-cost and easily-fabricated CoxNiyOmSen films were successfully prepared by using an electrodeposition method, followed by a selenization process. When using a flexible carbon cloth as a substrate, a core-shell structure of CC/CoxNiyOmSen was established with decent adhesion by applying each onedimensional carbon fiber in CC as the conducting core and a CoxNiyOmSen film as the electro-catalytic shell. When increasing the molar ratio of [Co(II)]/[Co(II)+Ni(II)] mixing salt from 0.00 to 017, the shrunk particle size and the increased surface area on the CC/Co-10 electrode rendered an optimal electrocatalyticability toward I3− reduction. Therefore, a dye-sensitized solar cell coupled with CC/Co-10 as the counter electrode reached a superior solar-to-electricity conversion efficiency of 10.71%, even higher than the traditional CC/Pt (9.38%). When further increasing the [Co(II)]/[Co(II)+Ni(II)] molar ratio from 0.17
to 0.67, the largely increased [Se2−]/[O2−+Se2−] atomic ratio and enhanced the electro-catalytic ability of CC/Co-40 electrode made a decent average overpotential (ηavg-HER) of 215 mV (vs. RHE), a specific overpotential at a current density of 10 mA cm−2 (η10-HER = 223 mV vs. RHE) or at a current density of
100 mA cm−2 (η100-HER= 556 mV vs. RHE), and a cathodic Tafel slop (βc) of 148 mV decade−1 for hydrogen evolution reaction (HER). Meanwhile, the same CC/Co-40 electrode also reached an optimal average overpotential (ηavg-OER) of 362 mV (vs. RHE), a specific overpotential at a current density of 100 mA cm−2 (η100-OER= 592 mV vs. RHE), and an anodic Tafel slop (βa) of 116 mV decade−1 for oxygen evolution reaction (OER); it showed a better OER activity than the common CC/RuO2 (ηavg-OER of 392 mV vs. RHE). Via tuning the stoichiometric ratio of the CC/CoxNiyOmSen electrode, multiple functional electro-catalyst of CoxNiyOmSen was independently optimized to reach op electrochemical performance toward I3
− reduction, HER, and OER, indicating its infinite potential to be applied in various electrochemical systems.
References
[1]. Braga A. F. B., Moreira S. P., Zampieri P. R., Bacchin J. M. G., and Mei P. R. New Processes for The Poduction of Solar-Grade PolyCrystalline Silicon: A review. Solar Energy Materials and Solar Cells, 2008,92 418-424.
[2]. Jin H, Guo C, Liu X, Liu J, Vasileff A, Jiao Y, Zheng Y, and Qiao S Z. Emerging Two-dimensional Nanomaterials for Electrocatalysis. Chemical reviews, 2018,118 6337-6408.
[3]. AEO(2022). U.S. electricity generation from selected fuels AEO2022 reference case. Receieved from https://www.eia.gov/outlooks/aeo/narrative/electricity/sub-topic-02.php.
[4]. Jacobson M Z, Delucchi M A, Bazouin G, Bauer Z AF, Heavey C C, Fisher E, Morris S B, Piekutowski D JY, Vencill T A, and Yeskoo T W. 100% Clean and Renewable Wind, Water, and Sunlight (WWS) All-sector Energy Roadmaps for the 50 United States. Energy & Environmental Science, 2015,8 2093-2117.
[5]. Y Kikuchi, T Ichikawa, M Sugiyama, K, asakazu. Battery-Assisted Low-Cost Hydrogen Production From Solar Energy: Rational Target Setting for Future Technology Systems. International Journal of Hydrogen Energy, 2019,44 1451-1465.
[6]. Fraas Lewis M. History of solar cell development. Low-Cost Solar Electric Power: Springer; 2014. p. 1-12.
[7]. Chigondo F. From Metallurgical-Grade to Solar-Grade Silicon: An Overview. Silicon, 2017,10 789-798; Khajavi L T, Morita K, Yoshikawa T, and Barati M. Removal of Boron from Silicon by Solvent Refining Using Ferrosilicon Alloys. Metallurgical and Materials Transactions B, 2014,46 615-620.
[8]. K Bishal, M Sebastian, T Christopher, B Sattar, C Laurent, D Edward, W Andreas, H Marc, and R Jochen. Atmospheric Pressure Dry Etching of Polysilicon Layers for Highly Reverse Bias‐Stable TOPCon Solar Cells. Solar RRL, 2022,6 2100481.
[9]. S Alexander, and G Vahan. 27.6% Efficient Silicon Concentrator Solar Cells for Mass Production. Technical Digest, 15th International Photovoltaic Science and Engineering Conference, Beijing, 2005.
[10]. W Puqun, L Zhe, X Kaichen, B Daniel John, H Minghui, A Armin G, S Rolf, and P Ian Marius. Periodic Upright Nanopyramids for Light Management Applications in Ultrathin Crystalline Silicon Solar Cells. IEEE Journal of Photovoltaics, 2017,7 493-501.
[11]. Green MA, Hishikawa Y, Dunlop ED, Levi DH, Hohl-Ebinger J, Yoshita M, and Ho-Baillie Anita WY. Prog. Photovolt: Res. Appl. 2019.
[12]. Britt J., and Ferekides C. Thin‐Film CdS/CdTe Solar Cell of 15.8% Efficiency. Applied Physics Letters, 1993,62 2851-2852.
[13]. N Motoshi, Y Koji, K Yamaguchi, Y Yusuke, K Takuya, and S Hiroki. Cd-Free Cu (In, Ga)(Se, S)2 Thin-Film Solar Cell with Record Efficiency of 23.35%. IEEE Journal of Photovoltaics, 2019,9 1863-1867.
[14]. L Feng, Z Liang, L Wenrui, Z Zichun, Y Qihui, Z Wenyu, S Ri, L Wuyue, X Shengjie, and F Haijun. Organic Solar Cells with 18% Efficiency Enabled by an Alloy Acceptor: A Two‐in‐One Strategy. Advanced Materials, 2021,33 2100830.
[15]. Z Yankai, L Xingrui, Y Jiayan, Q Qingqing, X Tengfeng, and L Tongxiang. Application of Quantum Dot Interface Modification Layer in Perovskite Solar Cells: Progress and Perspectives. Nanomaterials, 2022,12 2102.
[16]. K Kenji, A Yohei, Y Toru, O Keiji, F Jun-ichi, and H Minoru. Highly-efficient Dye-Sensitized Solar Cells with Collaborative Sensitization by Silyl-anchor and Carboxy-anchor Dyes. Chemical communications, 2015,51 15894-15897.
[17]. Grätzel B. O'Regan and M. A Low-cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films. nature, 1991,353 737-740.
[18]. A. Listorti B. O’Regan and J. R. Durrant. Electron Transfer Dynamics in Dye-Sensitized Solar Cells. Chemistry of Materials, 2011,23 3381-3399.
[19]. Z. Zheng W. Xie, B. Huang and Y. Dai. Plasmon‐Enhanced Solar Water Splitting on Metal‐Semiconductor Photocatalysts. Chemistry–A European Journal, 2018,24 18322-18333.
[20]. Jafari T, Moharreri E, Amin Alireza S, Miao R, Song W, and Suib S. Photocatalytic Water Splitting—The Untamed Dream: A Review of Recent Advances. Molecules, 2016,21 900.
[21]. Moysiadou A, Lee S, Hsu C S, Chen H M, and Hu X. Mechanism of Oxygen Evolution Catalyzed by Cobalt Oxyhydroxide: Cobalt Superoxide Species As a Key Intermediate And Dioxygen Release as a Rate-Determining Step. Journal of the American Chemical Society, 2020,142 11901-11914.
[22]. Rad P J, Aliofkhazraei M, and Darband G B. Ni-W Nanostructure Well-Marked by Ni Selective Etching for Enhanced Hydrogen Evolution Reaction. International Journal of Hydrogen Energy, 2019,44 880-894.
[23]. Azizi O, Jafarian M, Gobal F, Heli H, and Mahjani MG. The Investigation of The Kinetics And Mechanism of Hydrogen Evolution Reaction on Tin. International Journal of Hydrogen Energy, 2007,32 1755-1761.
[24]. Arora A, Oswal P, Datta A, and Kumar A. Complexes of Metals with Organotellurium Compounds and Nanosized Metal tellurides for Catalysis, Electrocatalysis and Photocatalysis. Coordination Chemistry Reviews, 2022,459 214406.
[25]. Gao Min-Rui, Xu Yun-Fei, Jiang Jun, and Yu Shu-Hong. Nanostructured Metal Chalcogenides: Synthesis, Modification, and Applications in Energy Conversion and Storage Devices. Chemical Society Reviews, 2013,42 2986-3017.
[26]. J. Xia Q. Wang, Q. Xu, R. Yu, L. Chen, J. Jiao, et al. High Efficiency Bifacial Quasi-Solid-State Dye-Sensitized Solar Cell Based on CoSe2 Nanorod Counter Electrode. Applied Surface Science, 2020,530 147238.
[27]. S Hong, Z Lu, and W Zhong-Sheng. Single-crystal CoSe2 Nanorods as an Efficient Electrocatalyst for Dye-Sensitized Solar Cells. Journal of Materials Chemistry A, 2014,2 16023-16029.
[28]. H Shoushuang, H Qingquan, C Wenlong, Z Jiantao, Q Qiquan, and Q Xuefeng. 3D Hierarchical FeSe2 Microspheres: Controlled Synthesis and Applications in Dye-sensitized Solar Cells. Nano Energy, 2015,15 205-215.
[29]. Murugadoss V, Wang N, Tadakamalla S, Wang B, Guo Z, and Angaiah S. In Situ Grown Cobalt Selenide/Graphene Nanocomposite Counter Electrodes for Enhanced Dye-sensitized Solar Cell Performance. Journal of Materials Chemistry A, 2017,5 14583-14594.
[30]. H Jinghao, W Jihuai, Z Min, T Yongguang, and L Zhang. A Transparent Cobalt Sulfide/reduced Graphene Oxide Nanostructure Counter Electrode for High Efficient Dye-sensitized Solar Cells. Electrochimica Acta, 2016,187 210-217.
[31]. Bi E, Chen H, Yang X, Peng W, Grätzel M, and Han L. A Quasi Core–Shell Nitrogen-Doped Graphene/Cobalt Sulfide Conductive Catalyst For Highly Efficient Dye-Sensitized Solar Cells. Energy & Environmental Science, 2014,7 2637-2641.
[32]. W Liang, S Yantao, W Yanxiang, Z Hong, Z Huawei, W Ying, T Shengyang, and M Tingli. Composite Catalyst of Rosin Carbon/Fe3O4: Highly Efficient Counter Electrode for Dye-sensitized Solar Cells. Chemical Communications, 2014,50 1701-1703.
[33]. Wei P, Hao Z, Yang Y, and Liu L. Hollow NiSe2 Nanospheres Grown on Graphene with Unconventional Dual-Vacancies in Dye-sensitized Solar Cells. Applied Surface Science, 2021,553 149567.
[34]. Subhadarshini S, Pavitra E, Raju Ganji S R, Chodankar N R, Mandal A, Roy S, Mandal S, Rao MV B, Goswami D K, and Huh Y S. One-pot Facile Synthesis and Electrochemical Evaluation of Selenium Enriched Cobalt Selenide Nanotube for Supercapacitor Application. Ceramics International, 2021,47 15293-15306.
[35]. Q Xing, L Hongmei, S Li, J Xiancai, and H Linxi. Morphology-Tuned Synthesis of Nickel Cobalt Selenides as Highly Efficient Pt-free Counter Electrode Catalysts for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2016,8 29486-29495.
[36]. Kim M-S, Abbas M-A, Thota R, and Bang J. Thermally Induced top-down Nanostructuring for the Synthesis of a Core/Shell-Structured CoO/CoSx Electrocatalyst. Journal of Materials Chemistry A, 2019,7 26557-26565.
[37]. G Feng, W Hong, X Xin, Z Gang, and W Zhong-Sheng. In Situ Growth of Co0. 85Se and Ni0. 85Se on Conductive Substrates as High-Performance Counter Electrodes for Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2012,134 10953-10958.
[38]. L Tao, M Xianmin, C Haijun, R Jing, L Zheting, L Yingxiang, G Lina, W Ning, Z Jiaoxia, and H Hongcai. Carbon Nanotube Aerogel–CoS2 Hybrid Catalytic Counter Electrodes for Enhanced Photovoltaic Performance Dye-sensitized Solar Cells. Nanoscale, 2018,10 4194-4201.
[39]. L Shuang, W Yinglin, L Fei, Y Guochun, Y Huanying, Z Xintong, and L Yichun. Adsorption Energy Optimization of Co3O4 Through Rapid Surface Sulfurization for Efficient Counter Electrode in Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C, 2017,121 12524-12530.
[40]. H Yi-June, L Chuan-Pei, P Hao-Wei, L Chun-Ting, F Miao-Syuan, V R, and H Kuo-Chuan. Microemulsion-Controlled Synthesis of CoSe2/CoSeO3 Composite Crystals for Electrocatalysis in Dye-sensitized Solar Cells. Materials today energy, 2017,6 189-197.
[41]. G Mingxing, Z Fengling, Y Yigang, W Simeng, and Y Shuhui. NiS/Cc Composite Electrocatalyst as Efficient Pt-free Counter Electrode for Dye-sensitized Solar Cells. Electrochimica Acta, 2016,205 15-19.
[42]. W Wenjun, P Xu, L Weiqing, Z Bing, C Haiwei, F Xiaqin, Y Jianxi, and D Songyuan. FeSe2 Films with Controllable Morphologies as Efficient Counter Electrodes for Dye-Sensitized Solar Cells. Chemical Communications, 2014,50 2618-2620.
[43]. H Jinghao, W Jihuai, Z Min, T Yongguang, and L Zhang. Flower-Like Nickel Cobalt Sulfide Microspheres Modified with Nickel Sulfide as Pt-free Counter Electrode for Dye-Sensitized Solar Cells. Journal of Power Sources, 2016,304 266-272.
[44]. S Elindjeane Sheela, M Vignesh, S Ramadasse, D Ragupathy, and A Subramania. Cobalt Selenide Decorated Polyaniline Composite Nanofibers as a Newer Counter Electrode for Dye‐Sensitized Solar Cell. Polymers for Advanced Technologies, 2021,32 3137-3149.
[45]. W Pengkun, H Zewei, Y Yang, and L Lu. Facile and Functional Synthesis of Ni0.85Se/Carbon Nanospheres with Hollow Structure as Counter Electrodes of DSSCs. Journal of Electroanalytical Chemistry, 2021,903 115830.
[46]. Murugadoss V, Wang N, Tadakamalla S, Wang B, Guo Z, and Angaiah S. In Situ Grown Cobalt Selenide/Graphene Nanocomposite Counter Electrodes for Enhanced Dye-sensitized Solar Cells Performance. Journal of Materials Chemistry A, 2017,5 14583-14594.
[47]. Tamilselvi C, Duraisamy P, Subathra N, Sumathi T, and Fredrick R Sonia, editors. CoSe2/graphene Composite: A Low-Cost, High Performance Counter Electrode for Dye Sensitized Solar Cells. Journal of Physics: Conference Series; 2021: IOP Publishing.
[48]. Mirzaei M, and Gholivand M B. Core-shell Structured Ni0. 85Se@ MoS2 Nanosheets Anchored on Multi-walled Carbon Nanotubes-based Counter Electrode for Dye-sensitized Solar Cells. Electrochimica Acta, 2022 141179.
[49]. Bian H, Chen T, Chen Z, Liu J, Li Z, Du P, Zhou B, Zeng X, Tang J, and Liu C. One-step Synthesis of Mesoporous Cobalt Sulfides (CoSx) on the Metal Substrate as an Efficient Bifunctional Electrode for Overall Water Splitting. Electrochimica Acta, 2021,389.
[50]. Liu P, Li J, Lu Y, and Xiang B. Facile Synthesis of NiS2 Nanowires and Its Efficient Electrocatalytic Performance for Hydrogen Evolution Reaction. International Journal of Hydrogen Energy, 2018,43 72-77.
[51]. Gu H, Fan W, and Liu T. Phosphorus-doped NiCo2S4 Nanocrystals Grown on Electrospun Carbon Nanofibers as Ultra-Efficient Electrocatalysts for the Hydrogen Evolution Reaction. Nanoscale Horizons, 2017,2 277-283.
[52]. Yin J, Li Y, Lv F, Lu M, Sun K, Wang W, Wang L, Cheng F, Li Y, and Xi P. Oxygen Vacancies Dominated NiS2/CoS2 Interface Porous Nanowires for Portable Zn–air Batteries Driven Water Splitting Devices. Advanced Materials, 2017,29 1704681.
[53]. Rajesh J A, Lee Y-H, Yun Y-H, Quy V V, Kang S-H, Kim H, and Ahn K-S. Bifunctional NiCo2Se4 and CoNi2Se4 Nanostructures: Efficient Electrodes for Battery-type Supercapacitors and Electrocatalysts for the Oxygen Evolution Reaction. Journal of Industrial and Engineering Chemistry, 2019,79 370-382.
[54]. Ming F, Liang H, Shi H, Xu X, Mei G, and Wang Z. MOF-derived Co-doped Nickel Selenide/C Electrocatalysts Supported on Ni Foam for Overall Water Splitting. Journal of Materials Chemistry A, 2016,4 15148-15155.
[55]. Cao X, Hong Y, Zhang N, Chen Q, Masud J, Zaeem M A, and Nath M. Phase Exploration and Identification of Multinary Transition-Metal Selenides as High-efficiency Oxygen Evolution Electrocatalysts through Combinatorial Electrodeposition. ACS Catalysis, 2018,8 8273-8289.
[56]. Y. Yin J. Xu, W. Guo, Z. Wang, X. Du, C. Chen, et al. A Single-Step Fabrication of CoTe2 Nanofilm Electrode Toward Efficient Overall Water Splitting. Electrochimica Acta, 2019,307 451-458.
[57]. X. Zhang Y. Liu, J. Gao, G. Han, M. Hu, X. Wu, et al. Defect-Rich (Co–CoS2)x@Co9S8 Nanosheets Derived from Monomolecular Precursor Pyrolysis with Excellent Catalytic Activity for Hydrogen Evolution Reaction. Journal of Materials Chemistry A, 2018,6 7977-7987.
[58]. Panda C., Menezes P. W., Walter C., Yao S., Miehlich M. E., Gutkin V., Meyer K., and Driess M. From a Molecular 2Fe-2Se Precursor to a Highly Efficient Iron Diselenide Electrocatalyst for Overall Water Splitting. Angew Chem Int Ed Engl, 2017,56 10506-10510.
[59]. G. Liu C. Shuai, Z. Mo, R. Guo, N. Liu, X. Niu, et al. The one-pot Synthesis of Porous Ni0.85Se Nanospheres on Graphene as an Efficient and Durable Electrocatalyst for Overall Water Splitting. New Journal of Chemistry, 2020,44 17313-17322.
[60]. Chen Y, Xu S, Zhu S, Jacob R J, Pastel G, Wang Y, Li Y, Dai J, Chen F, Xie H, Liu B, Yao Y, Salamanca-Riba Lourdes G., Zachariah Michael R., Li Teng, and Hu Liangbing. Millisecond Synthesis of CoS Nanoparticles for Highly Efficient Overall Water Splitting. Nano Research, 2019,12 2259-2267.
[61]. Chakraborty B., Beltran-Suito R., Hlukhyy V., Schmidt J., Menezes P. W., and Driess M. Crystalline Copper Selenide as a Reliable Non-Noble Electro(pre)catalyst for Overall Water Splitting. ChemSusChem, 2020,13 3222-3229.
[62]. Ho T A, Bae C, Nam H, Kim E, Lee S Y, Park J H, and Shin H. Metallic Ni3S2 Films Grown by Atomic Layer Deposition as an Efficient and Stable Electrocatalyst for Overall Water Splitting. ACS applied materials & interfaces, 2018,10 12807-12815.
[63]. S. Wan W. Jin, X. Guo, J. Mao, L. Zheng, J. Zhao, et al. Self-Templating Construction of Porous CoSe2 Nanosheet Arrays as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. ACS Sustainable Chemistry & Engineering, 2018,6 15374-15382.
[64]. Z. Wu J. Li, Z. Zou and X. Wang. Folded Nanosheet-like Co0.85Se Array for Overall Water Splitting. Journal of Solid State Electrochemistry, 2018,22 1785-1794.
[65]. Loni E, Siadati MH, and Shokuhfar A. Mesoporous Cobalt–Cobalt Phosphide Electrocatalyst for Water Splitting. Materials Today Energy, 2020,16 100398.
[66]. Tong J, Li Y, Bo L, Li W, Li T, Zhang Q, Kong D, Wang H, and Li C. CoP/N-doped Carbon Hollow Spheres Anchored on Electrospinning core–shell N-doped Carbon Nanofibers as Efficient Electrocatalysts for Water Splitting. ACS Sustainable Chemistry & Engineering, 2019,7 17432-17442.
[67]. Wang M, Ye C, Liu H, Xu M, and Bao S. Nanosized Metal Phosphides Embedded in Nitrogen‐doped Porous Carbon Nanofibers for Enhanced Hydrogen Evolution at All pH Values. Angewandte Chemie, 2018,130 1981-1985.
[68]. Li T, Lv Y, Su J, Wang Y, Yang Q, Zhang Y, Zhou J, Xu L, Sun D, and Tang Y. Anchoring CoFe2O4 Nanoparticles on N‐doped Carbon Nanofibers for High‐performance Oxygen Evolution Reaction. Advanced Science, 2017,4 1700226.
[69]. Zhen D, Zhao B, Shin H‐C, Bu Y, Ding Y, He G, and Liu M. Electrospun Porous Perovskite La0. 6Sr0. 4Co1–xFexO3–δ Nanofibers for Efficient Oxygen Evolution Reaction. Advanced Materials Interfaces, 2017,4 1700146.
[70]. X. Liu R. Yi, N. Zhang, R. Shi, X. Li and G. Qiu. Cobalt Hydroxide Nanosheets and their Thermal Decomposition to Cobalt Oxide Nanorings. Chemistry–An Asian Journal, 2008,3 732-738.
[71]. Dong L, Chu Y, and Sun W. Controllable Synthesis of Nickel Hydroxide and Porous Nickel Oxide Nanostructures with Different Morphologies. Chemistry–A European Journal, 2008,14 5064-5072.
[72]. Y. Tang Y. Liu, S. Yu, Y. Zhao, S. Mu and F. Gao. Hydrothermal Synthesis of a Flower-Like Nano-Nickel Hydroxide for High Performance Supercapacitors. Electrochimica Acta, 2014,123 158-166.
[73]. Hou Y, Lohe M-R, Zhang J, Liu S, Zhuang X, and Feng X. Vertically Oriented Cobalt Selenide/NiFe Layered-Double-Hydroxide Nanosheets Supported on Exfoliated Graphene foil: an Efficient 3D Electrode for Overall Water Splitting. Energy & Environmental Science, 2016,9 478-483.
[74]. H. Zhong Y. Feng and N. Alonso-Vante. Heterostructures Based on Transition Metal Chalcogenides and Layered Double Hydroxides for Enhanced Water Splitting. Current Opinion in Electrochemistry, 2022,34.
[75]. Shahbazi Farahani F., Rahmanifar M. S., Noori A., El-Kady M. F., Hassani N., Neek-Amal M., Kaner R. B., and Mousavi M. F. Trilayer Metal-Organic Frameworks as Multifunctional Electrocatalysts for Energy Conversion and Storage Applications. J Am Chem Soc, 2022,144 3411-3428.