簡易檢索 / 詳目顯示

研究生: 黃筠
Huang, Yun
論文名稱: 探討6E模式搭配虛擬實境系統進行STEAM教學實作課程對高中生學習成效之影響-以四軸飛行機教學活動為例
Discussion on the Effect of STEAM Teaching Practice Course on the Learning Effect of High School Students in 6E Mode and Virtual Reality System-A Case Study of Quadcopters
指導教授: 蕭顯勝
Hsiao, Hsien-Sheng
學位類別: 碩士
Master
系所名稱: 科技應用與人力資源發展學系
Department of Technology Application and Human Resource Development
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 148
中文關鍵詞: 虛擬實境(VR)6E模式STEAM教學實作課程學習歷程
英文關鍵詞: Virtual Reality(VR), 6E model, STEAM, Hand-on course, Learning retention
DOI URL: http://doi.org/10.6345/THE.NTNU.DTAHRD.019.2018.F06
論文種類: 學術論文
相關次數: 點閱:292下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 2016年常被形容為虛擬實境(Virtual Reality, VR)元年,隨著科技的發展,到了2018年VR技術更升級,不再需要連結手機、電腦,VR硬體裝置的發展更輕便且越來越普及。但目前在教育上應用VR於工程相關領域相對少見,而十二年國教修改課綱,期望在高中階段著重「工程設計」,強調藉由資訊科技與工程設計的實作活動,提供學生STEAM跨學科知識整合(science, technology, engineering, art and mathematics)的學習,由於工程領域相關課程中亦包含許多抽象概念,VR系統的一大特就是能夠將抽象概念具體化,且能夠過VR避免實驗現場所發生的意外,讓學習者在VR的沉浸感中能操作練習且更安全的學習。有鑑於此,本研究以台北市某高中一年級四個班級共162位學生為研究對象,進行以四軸飛行機為主題之實作教學活動,深入探討本研究之教學模式對學生的STEAM傾向、抽象概念學習成效及實作能力的影響。研究貢獻包括產出適用於高中生活科技課之STEAM教學與6E模式搭配VR系統進行抽象概念實作課程、STEAM傾向量表及實作能力評量工具並以課程錄影方式輔助說明量化資料。教學實驗結果顯示實施搭配VR教學課程有助於提升學習者抽象概念學習成效、STEAM傾向及實作能力。

    With the upgrade of technology in 2018, virtual reality (VR) has revolutionized education. Nowadays, VR is not dependent on hardware or software but has more lightweight, and comfortable design. However, in the field of engineering, the application of VR is relatively rare. Engineering courses contain many abstract concepts, but VR is able to make abstract concepts concrete, from which it not only avoids accidents on the scene, but also provides learners safe learning area and to do exercises. The Taiwan's 12-year compulsory education law expects high schools to emphasize "engineering design" with hands-on courses and information technology integrated to learning STEAM (Science, Technology, Engineering, Art, Mathematics) course which requires an intentional connection. This study uses STEAM and 6E model with VR system course. There were 162 students participating in this research, the teaching activities used quadcopters as the theme that was carried out in the science and technology course. This result shows this learning activity can improve learners’ understanding of abstract concepts, interdisciplinary knowledge integration and enhance the students' hands-on ability. This research also records the learning process of students that explains their behavior of hands-on course.

    謝 誌 ... i 中文摘要 .........ii ABSTRACT.........iii 目 錄 ...........iv 表 次 ...........vii 圖 次 .........ix 第一章 緒論 .......... 1 第一節 研究背景與動機......1 第二節 研究目的.......7 第三節 待答問題.......8 第四節 研究範圍與限制.......9 第五節 研究流程......10 第六節 名詞解釋......12 第二章 文獻探討 ....... 15 第一節 虛擬實境......15 第二節 STEAM教學......24 第三節 6E 模式.......27 第四節 實作活動課程.....30 第五節 學習歷程.....33 第六節 文獻評析.....35 第三章 研究方法 ....... 37 第一節 研究架構 ....... 37 第二節 研究對象 ...... 39 第三節 研究實施與設計 ........ 41 第四節 教學活動設計 ....... 43 第五節 研究工具 ........ 53 第六節 資料處理與分析 ....... 58 第四章 研究結果與討論 ........ 60 第一節 不同教學模式對 STEAM 傾向之影響 ...... 60 第二節 不同教學模式對學習成效之影響........72 第三節 不同教學模式對實作能力之影響........76 第四節 不同教學模式之學生學習歷程之差異.......86 第五章 結論與建議 ........ 94 第一節 結論.....94 第二節 研究建議.......98 參考文獻 ........ 101 一、 中文部份........101 二、 外文部份........104 附 錄 ......... 113 附錄一 實驗組與對照組教學活動設計......114 附錄二 抽象概念成效測驗卷.....141 附錄三 STEAM傾向量表.....144 附錄四 學習單.....147

    1、 中文部份
    江雪齡(1995)。教學成效的依據-教學檔案的建立,成人教育,24, 41-44。
    李鴻亮(2011)。結合體驗策略與多媒體教材於國小環境教育地層下陷單元學習成效之研究─ 多媒體教學成功因素之省思。教學科技與媒體,97,64-82。
    林清山(1992)。心理與教育統計學。台北市:東華。
    林坤誼(2014)。STEM 科技整合教育 培養整合理論與實務的科技人才。科技與人力教育季刊,1(1)。1。
    林偉文、劉家瑜(2016)。培育科學教學創造力:科學教學創新要素之探究。教育心理學報,48(1),1-14。
    林靜雯、邱美虹(2009)。探究以學生心智模式為設計基礎之教-學序列對學生電學學習之影響。科學教育學刊,17(6),481-507。
    林靜雯(2012)。國中學生為什麼改變了心智模式?以電學教-學序列為例。臺北市立教育大學學報教育類,43(1),59-92。
    林建佑(2008)。認知風格對模擬學習成效及學習歷程影響之研究(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    卓沛彣(2015)。利用體驗式學習策略搭配3D列印技術探討高中生科學抽象概念理解成效之研究(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    國家教育研究院(2016)。十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校科技領域草案。檢自:https://www.naer.edu.tw/ezfiles/0/1000/attach/92/pta_10229_131308_94274.pdf
    曾榮梅(2008)。視覺化與當代設計思維。設計學研究,11(2),1-19。
    張基成、童宜慧(2000)。網路化學習歷程檔案系統之建構與評鑑。遠距教育季刊,13,78-90。
    張春與(1989)。現代心理學辭典。台北:東華書局。
    張玉山(2003)。網路虛擬團隊之技術創造力研究(未出版之博士論文)。國立臺灣師範大學,臺北市。
    張玉山(2016)。從創客教育培養創造力、實踐力、以及承受力。新北市教育季刊,18,14-15。
    張智鈞(2001)。以大型多點觸控螢幕進行數位遊戲式協同學習活動之研究(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    張基成、廖悅媚(2013)。數位化學習歷程檔案對自我調整學習之影響─ 學習目標設定的作用。科學教育學刊,21(4),431-454。
    游博仁、梅菘育、陳攸華(2015)。小小人兒線上生活百科的發展與評估。全球華人計算機應用大會工作坊論文集,2015,25-32。
    游光昭、林坤誼、洪國峰(2010)。從反思與實踐看國中生在科技實作活動中的學習歷程表現。課程與教學季刊,13(3),219-250。
    趙世範、陳季聰(2003)。解說抽象概念的數位內容教材製作之研究。科技教育課程改革與發展學術研討會論文集,2003,139-146。
    楊開城(2016)。以學習活動為中心的教學設計實訓指南。北京:電子工業出版社。
    鄭念慈(2017)。翻轉新視界-結合磨課師(MOOCs)的藝術教育。臺灣教育評論月刊,6(9),288-293。
    簡佑宏、朱柏穎、簡爾君(2017)。STEAM取向之Maker教學。中等教育,68 (2),10-26。
    劉明洲(1998)。遠距教學之建置與效益評估。資訊與教育,65,31-38。
    聶健文、顏芳慧(2010)。實作導向的護理研究訓練成效評值。南臺灣醫學雜誌,6(1),30-37。
    廖述盛、黃秀美、賴崇閔(2011)。虛擬實境結合問題導向學習應用於行動化醫學教育之研究。科學教育學刊,19(3),237-2556。
    蔡錫濤(2000)。九年一貫課程重要概念釋疑。南一新講臺,1,48-51。
    羅希哲、陳柏豪、石儒居、蔡華齡、蔡慧音(2009)。STEM整合式教學法在國民中學自然與生活技術領域之研究。人文社會科學研究,3(3),42-66。
    羅希哲、蔡慧音、曾國鴻(2011)。高中女生STEM 網路專題式合作學習之研究。高雄師大學報,30(1),41-46。
    游光昭、蕭顯勝(2006)。科技態度與科技概念改變之實證研究。行政院國家科學委員會專題研究計畫成果報告(編號:94-2516-S-003-001-)。台北市,國科會。

    2、 外文部份
    Alaker, M., Wynn, G. R., & Arulampalam, T. (2016). Virtual reality training in laparoscopic surgery: A systematic review & meta-analysis. International Journal of Surgery, 29, 85-94.
    Arnold, M., & Millar, R. (1987). Being constructive: An alternative approach to the teaching of introductory ideas in electricity. International Journal of Science Education, 9(5), 553-563.
    Akcayir, M., & Akcayir, G. (2017). Advantages and challenges associated with augmented reality for education: A systematic review of the literature. Educational Research Review, 20, 1-11.
    Barry, N. (2014). The ITEEA 6E learning by DeSIGNTM Model. Retrieved From http://www.oneida-boces.org/cms/lib05/NY01914080/Centricity/ Domain/36/6E%20Learning%20by%20De- sign%20Model.pdf
    Bakeman R., & Gottman, J. M. (1997). Observing interaction: An introduction to sequential analysis(2nd Ed). UK: Cambridge 125 University Press.
    BCC Research. (2016, March). Virtual and augmented reality: Technologies and global markets. Retrieved from https://www.bccresearch.com/report/download/report/ift124a
    Berry III, R. Q., Reed, P. A., Ritz, J. M., Lin, C. Y., Hsiung, S., & Frazier, W. (2004). Stem initiatives: Stimulating students to improve science and mathematics achievement. The Technology Teacher, 64(4), 23-30.
    Besemer, S. P., & O’Quin, K. (1999). Creative Product., in M Runco and S Pritzker (eds), Encyclopedia of creativity (pp. 413-422). Academic Press, San Diego.
    Besemer, S. P., & Treffinger, D. J. (1981). Analysis of creative products: Review and synthesis. The Journal of Creative Behavior, 15(3), 158-178. doi: 10.1002/j.2162-6057.1981.tb00287.x
    Bigge, M. L., & Shermis, S. S. (1999). How does Vygotsky‘s thought and language imply a theory of learning. Learning Theories for Teachers, 124-132.
    Boser, R. A., Palmer, J. D., & Daugherty, M. K. (1998). Students' attitudes toward technology in selected technology education programs. Journal of Technology Education, 10(1), 4-19.
    Bruce, H. M., Thomas, A. D., & Maxine, D. B.(1987). Visualization in scientific computing. Los Alamitos, US: ACM Press.
    Bull, G., & Berry, R. (2011). Classroom engineering and craft technologies. Learning and Leading with Technology, 38, 26–27.
    Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities. Arlington, VA: NSTA Press.
    Carlton, K. (1999). Teaching electric current and electrical potential. Physical Education, 34(6), 341-345.
    Casad, B. J., & Jawaharlal, M. (2012, June), learning through guided discovery: An engaging Approach to K-12 STEM Education. Paper presented at 2012 ASEE Annual Conference & Exposition, San Antonio, Texas. Retrieved from https://peer.asee.org/21643
    Cecil, J., Ramanathan, P., & Mwavita, M. (2013). Virtual learning environments in engineering and STEM education. In 2013 IEEE Frontiers in Education Conference (FIE) (pp. 502-507). IEEE.
    Ceylan, S., & Ozdilek, Z. (2015). Improving a sample lesson plan for secondary science courses within the STEM education. Procedia-Social and Behavioral Sciences, 177, 223-228.
    Chan, Y. S., & Ahern, T. C. (1999). Targeting motivation: adapting flow theory to instructional design. Journal of Educational Computing Research, 21(2), 151-163.
    Choi, B., & Baek, Y. (2011). Exploring factors of media characteristic influencing flow in learning through virtual worlds. Computers & Education, 57(4), 2382-2394.
    Chu, P. Y., & Chien, Y. H. (2017). The effectiveness of using stereoscopic 3D for proportion estimation in product design education. EURASIA Journal of Mathematics, Science and Technology Education, 10(13), 6535-6548.
    Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates Inc.
    Cohen, J. (1994). The earth is round (p < .05). American Psychologist, 49(12), 997-1003.
    Cole, K. C. (1999). First you build a cloud : And other reflections on physics as a way of life. San Diego, CA: Harcourt Brace.
    Colucci-Gray, L., Trowsdale, J., Cooke, C. F., Davies, R., Burnard, P., & Gray, D. S. (2017). Reviewing the potential and challenges of developing STEAM education through creative pedagogies for 21st learning: how can school curricula be broadened towards a more responsive, dynamic, and inclusive form of education. British Educational Research Association (pp.125).
    Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. Harper Collins Publishers, New York, NY.
    Dale, E. (1969). Audiovisual methods in teaching. New York: The Dryden Press.
    Delello, J. A., & McWhorter, R. R. (2013). New visual social media for the higher education classroom. The social classroom: Integrating social network use in education, 368-393.
    Dewey, J. (1938). Experience and Education. New York:Collier Books.
    Dickinson, G., & Jackson, J. K. (2008). Planning for success: How to design and implement project based science activities. The Science Teacher, 75(8), 29–32.
    Duit, R., & Treagust, D. F. (1995). Students’ conceptions and constructivist teaching approaches. In B. J. Fraser & H. J. Walberg (Eds.), Improving science education (pp. 46-69). Chicago: The University of Chicago Press.
    Eguchi, A. (2016). RoboCupJunior for promoting STEM education, 21st century skills, and technological advancement through robotics competition. Robotics and Autonomous Systems, 75, 692-699.
    Finnerty, V. R. (2006). Learning genetics with paper pets. Science Scope, 29(6), 18–23.
    Freina, L., & Ott, M. (2015, January). A literature review on immersive virtual reality in education: state of the art and perspectives. The International Scientific Conference eLearning and Software for Education (Vol. 1, p. 133).
    Guzzetti, B. J., Williams, W. O., Skeels, S. A., &Wu, S. M. (1997). Influence of text structure on learning counterintuitive phtsics concepts. Journal of Research in Science Teaching, 34(7), 709-719.
    Häfner, P., Häfner, V., & Ovtcharova, J. (2013). Teaching methodology for virtual reality practical course in engineering education. Procedia Computer Science, 25, 251-260.
    Hsiao, H. S., Chang, C. S., Lin, C. Y., Chang, C. C., & Chen, J. C. (2014). The influence of collaborative learning games within different devices on student’s learning performance and behaviours. Australasian Journal of Educational Technology, 30(6), 652-669.
    Hsiao, H. S., & Chen, J. C. (2016). Using a gesture interactive game-based learning approach to improve preschool children's learning performance and motor skills. Computers & Education, 95, 151-162.
    Ibanez, M. B., Di Serio, A., Villaran, D., & Kloos, C. D. (2014). Experimenting with electromagnetism using augmented reality: Impact on flow student experience and educational effectiveness. Computers & Education, 71, 1-13.
    International Technology Education Association. (1996). Technology for all Americans. Virginia: International Technology Education Association.
    Jamil, F. M., Linder, S. M., & Stegelin, D. A. (2018). Early childhood teacher beliefs about STEAM education after a professional development conference. Early Childhood Education Journal, 46(4), 409-417.
    Kelley, T. R. (2010). Staking the claim for the ‘T’ in STEM. The Journal of Technology Studies, 36(1), 2-11.
    Ketelhut, D. J. (2007). The impact of student self-efficacy on scientific inquiry skills: An exploratory investigation in River City, a multi-user virtual environment. Journal of Science Education and Technology, 16(1), 99-111.
    Kim, J. O., & Kim, J. (2018). Development and application of art based STEAM education program using educational robot. International Journal of Mobile and Blended Learning (IJMBL), 10(3), 46-57.
    Klopp, T. J., Rule, A. C., Schneider, J. S., & Boody, R. M. (2014). Computer technology-integrated projects should not supplant craft projects in science education. International Journal of Science Education, 36(5), 865-886.
    Lillard, A. S. (2005). Montessori: The science behind the genius. New York: Oxford University Press.
    Lorenzo, G., Lledó, A., Pomares, J., & Roig, R. (2016). Design and application of an immersive virtual reality system to enhance emotional skills for children with autism spectrum disorders. Computers & Education, 98, 192-205.
    Lucas, M. (2018). Next VR is adding six-degree-of-freedom (6DoF) tracking to its live-streaming VR service. Retrieved from http://tcrn.ch/2CTYUlK
    MacNab, B. R. (2012). An experiential approach to cultural intelligence education. Journal of Management Education, 36(1), 66-94.
    Mathewson, J. H. (2005). The visual core of science: Definition and applications to education. International Journal of Science Education, 27(5), 529–548.
    McCormick, R. (2004). Issues of learning and knowledge in technology education. International Journal of Technology and Design Education, 14(1), 21-44.
    Min, K. J., Jackman, J., & Chan, J. (2014). Visual models for abstract concepts towards better learning outcomes and self-efficacy. In Proceedings of 121st ASEE Annual Conference & Exposition, Indianapolis, Indiana.
    Morlaix, S. (2010). Assessing pupils’ skills: implications for research. Journal of Curriculum Studies, 42(3), 395-409.
    Nathan, M. J., Kintsch, W., & Young, E. (1992). A theory of algebra-word-problem comprehension and its implications for the design of learning environments. Cognition and Instruction, 9(4), 329-389.
    National Academy of Engineering. (2002). Technically speaking- Why all Americans need to know more about technology. Washington, D.C.: National Academy Press.
    NGSS Lead States. (2013). Next generation science standards: For states, by states. Washington, DC: National Academies Press.
    Nunnally, J. C. (1978). Psychometric theory. New York: McGraw-Hill.
    Noyes, E., & Deligiannidis, L. (2012). 2D and 3D visualizations of creative destruction for entrepreneurship education. In Z. Hippe, J. Kulikowski & T. Mroczek (Eds.), Human -Computer Systems Interaction: Backgrounds and Applications 2 (Vol. 99, pp. 277-294): Springer Berlin Heidelberg.
    OECD (2013). Draft collaborative problem solving framework. Retrieved on Dec. 25, 2014 from http://www.oecd.org/pisa/pisaproducts/Draft%20PISA%202015%20Collaborative%20Problem%20Solving%20Framework%20.pdf
    Okutsu, M., DeLaurentis, D., Brophy, S., & Lambert, J. (2013). Teaching an aerospace engineering design course via virtual worlds: A comparative assessment of learning outcomes. Computers & Education, 60(1), 288-298.
    Oxman, N. (2016). The age of entanglement. JoDS: Journal of Design and Science, MIT PRESS, Inaugural Edition. Retrieved from http://jobs.mitpress.mit.edu/pub/AgeOfEntanlemant
    Partnership for 21st Century Skills (2011). P21 Framework Definitions. Retrieved Dec 25, 2014, from http://www.p21.org/documents/P21_Framework_ Definitions.pdf.
    Park, N. (2014). The development of STEAM career education program using virtual reality technology. Life Science Journal, 11(7), 676-679.
    Passig, D., Tzuriel, D., & Eshel-Kedmi, G. (2016). Improving children's cognitive modifiability by dynamic assessment in 3D Immersive Virtual Reality environments. Computers & Education, 95, 296-308.
    Peters, C., Postlethwaite, D., & Wallace, M. W. (2018). Systems and methods providing enhanced education and training in a virtual reality environment. U.S. Patent No. 9,965,973.Washington, DC: U.S. Patent and Trademark Office.
    Petrina, S. (2007). Advanced teaching methods for the technology classroom. Hershey, PA: Information Science Publishing.
    Piaget, J. (1977).The development of thought: Equilibration of cognitive structures. NY: The Viking Press.
    Pinelli, T., & Haynie III, W. (2010). A case for the nationwide inclusion of engineering in the K-12 curriculum via technology education. Journal of Technology Education, 21(2), 52-68.
    Polina, H. (2013). For, victory, hefner, jivka, ovtcharova. Teaching Methodology for Virtual Reality Practical Course in Engineering Education, 25, 251-260.
    Roca-González, C., Martin-Gutierrez, J., García-Dominguez, M., & Carrodeguas, M. d. C. M. (2017). Virtual technologies to develop visual-spatial ability in engineering students. EURASIA Journal of Mathematics, Science and Technology Education, 13(2), 441-468.
    Salinger, G., & Zuga, K. (2009). Background and history of the STEM movement. In International Technology and Engineering Educators Association (ITEEA) (Ed.), The overlooked STEM imperatives: Technology and engineering(pp. 4-9). Reston, VA: ITEEA.
    Scott, S. D., Mandryk, R. L., & Inkpen, K. M. (2003). Understanding children’s collaborative interactions in shared environments. Journal of Computer Assisted Learning , 19(1), 220-228.
    Sargunam, S. P., Moghadam, K. R., Suhail, M., & Ragan, E. D. (2017, March). Guided head rotation and amplified head rotation: Evaluating semi-natural travel and viewing techniques in virtual reality. In: Virtual Reality (VR), 2017 IEEE (pp. 19-28). IEEE.
    Taylor, H. A., & Hutton, A. (2013). Think3d!: Training spatial thinking fundamental to STEM education. Cognition and Instruction,31(4), 434-455.
    Vaughan, N., Gabrys, B., & Dubey, V. N. (2016). An overview of self-adaptive technologies within virtual reality training. Computer Science Review, 22, 65-87.
    Veljko, P., Michael, G., Victor, C., Pasi, M., Christian,G., Vladimir, M. P., Kosta, J. (2016). Virtuallaboratories for education in science, technology, and engineering: A review.Computers & Education, 95, 309-327.
    Villagrasa, S., Fonseca, D., & Durán, J. (2014, October). Teaching case: applying gamification techniques and virtual reality for learning building engineering 3D arts. Proceedings of the Second International Conference on Technological Ecosystems for Enhancing Multiculturality (pp. 171-177). ACM.
    Weaver, G. C. (1998). Strategies in K-12 science instruction to promote conceptual change. Science Education, 82(4), 455-472.
    Wells, J., Lammi, M., Gero, J., Grubbs, M. E., Paretti, M., & Williams, C. (2016). Characterizing design cognition of high school students: Initial analyses comparing those with and without pre-engineering experiences. Journal of Technology Education, 27(2), 78-91.
    Yoon, S., Anderson, E., Lin, J., & Elinich, K. (2017). How augmented reality enables conceptual understanding of challenging science content. Journal of Educational Technology & Society, 20(1), 156.

    下載圖示
    QR CODE