簡易檢索 / 詳目顯示

研究生: 吳沂叡
Wu, I-Jui
論文名稱: 以可變空間理論規劃基金投資之最佳組合
Planning the Best Combination of Fund Investment Based on the Changeable Space Theory
指導教授: 黃啟祐
Huang, Chi-Yo
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 123
中文關鍵詞: 理財產業金融趨勢基金投資投資組合資本利得De Novo 規劃法可變空間理論
英文關鍵詞: Financial Trends, Fund Investments, Portfolio Optimization, De Novo Planning
DOI URL: http://doi.org/10.6345/NTNU201901179
論文種類: 學術論文
相關次數: 點閱:329下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 理財產業被視為 21 世紀最重要的產業之一且對人類福祉有重大貢獻。 理財產業的成長將成為下一波經濟長波的主要驅動力量。理財產業這高專 業性產業面臨著投資者需求眾多、產品多樣化、市場競爭龐大及全球金融 趨勢不確定性高的嚴峻挑戰。尤其主要的基金投資屬於最大宗面項,投資者更為重視。面對金融趨勢的瞬息萬變,如何能擄獲投資者的青睞,提升理財績效,成為理財產業的基金投資當前最重要的議題。基金投資組合是 有效的方式,若得以採行最適投資組合,有效整合各類型基金,提升資本利得,將對理財產業的發展有極大的助益,更能大幅提昇對全球投資者穩健與成長的理財投資貢獻。因此,本研究擬以新型規劃法(De Novo Programming)與可變空間理論(Changeable Space Theory)評估並規劃出最適的基金投資組合;分析影響理財產業結合各類型基金之關鍵要素,並運用文獻探討,彙整出影響基金投資組合的關鍵因素,透過蒐集理財領域之專家問卷,及透過蒐集理財領域之金融相關員工問卷,歸納出理財產業設計基金組合的關鍵因素。本研究可提供做為全球投資者的基金配置根本,促使理財產業提供的投資產品架構更周全,加速投資種類之變化,帶動理財產業蓬勃發展。

    The financial management industry is regarded as one of the most important industries in the 21st century and has made significant contributions to human well-being. Faced with the rapid changes in financial trends, fund portfolio is an effective way. This study intends to evaluate and plan the optimal fund investment portfolio by De Novo Programming and Changeable Space Theory; analyze the key factors that affect the financial management industry and combine various types of funds, and use the literature to explore to reconcile the key factors affecting the fund's investment portfolio, by collecting expert questionnaires in the field of financial management and collecting financial- related employee questionnaires in the financial sector, the key factors of the financial management industry design fund portfolio are summarized, and it is hoped that by understanding the key portfolio motives, choose the most appropriate fund portfolio for reference to promote financial performance. This research can provide the fund allocation as a global investor, and promote the investment product structure provided by this industry to be more comprehensive, accelerate the change of investment types, and promote the vigorous development of the financial management industry.

    摘要 I Abstract II List of Figure V List of Table VI Chapter 1 Introduction 1 1.1 Research Backgrounds 1 1.2 Research Motivations 7 1.3 Research Purposes and Limitations 9 1.4 Research Method and Framework 11 Chapter 2 Literature Review 19 2.1 Portfolio Optimization 22 2.2 Constrains in Portfolio Construction 27 2.3 Mitigating the Impact of Estimation Errors in MVO 34 2.4 Diversification Methods 42 2.5 Collective Investment 46 2.6 Risk of Collective Investment 48 Chapter 3 Research Method 53 3.1 Multi-Objective Decision Making 55 3.2 Optimal System Design and De Novo Programming 60 3.3 Formulation of Final Testing Capacity Planning Optimization 62 3.4 Changeable Space Programming Formulation 63 Chapter 4 Empirical Study 69 4.1 Solving De Novo Programming 70 4.2 MOP with Changeable Parameters 87 Chapter 5 Discussion 98 Chapter 5 Discussion 98 5.1 Managerial Implications 106 5.2 Difference Between De Novo Programming and Changeable Space 110 Chapter 6 Conclusion 115 References 119

    Abdi, H. (2010). Partial least squares regression and projection on latent structure regression (PLS Regression). Wiley interdisciplinary reviews: computational statistics, 2(1), 97-106.
    Armstrong, J. (2008). Methods to elicit forecasts from groups: Delphi and prediction markets compared.
    Banerji, S., Leinwand, P., & Mainardi, C. R. (2009). Cut Costs, Grow Stronger: A Strategic Approach to what to Cut and what to Keep: Harvard Business Press.
    Chen, C.-T., Hung, W.-Z., & Zhang, W.-Y. (2013). Using interval valued fuzzy vikor for cloud service provider evaluation and selection. Paper presented at the Proceedings of the International Conference on Business and Information (BAI’13).
    Chiang, Y.-H. (2013). Using a combined AHP and PLS path modelling on blog site evaluation in Taiwan. Computers in Human Behavior, 29(4), 1325- 1333.
    Chin, W. W. (1998). The partial least squares approach to structural equation modeling. Modern methods for business research, 295(2), 295-336.
    Dalkey, N., & Helmer, O. (1963). An experimental application of the Delphi method to the use of experts. Management science, 9(3), 458-467.
    Dalkey, N. C. (1969). The Delphi method: An experimental study of group opinion. Retrieved from
    F. Hair Jr, J., Sarstedt, M., Hopkins, L., & G. Kuppelwieser, V. (2014). Partial least squares structural equation modeling (PLS-SEM) An emerging tool in business research. European Business Review, 26(2), 106-121.
    Falatoonitoosi, E., Ahmed, S., & Sorooshian, S. (2014). Expanded DEMATEL for determining cause and effect group in bidirectional relations. The Scientific World Journal, 2014.
    Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 39-50.
    Friesz, T. L., Tourreilles, F. A., Han, A. F.-W., & Fernandez, J. E. (1980). Comparison of multicriteria optimization methods in transport project evaluation. Transportation Research Record, 751, 38-41.
    Gabus, A., & Fontela, E. (1972). World problems, an invitation to further thought within the framework of DEMATEL. Battelle Geneva Research Center, Geneva, Switzerland, 1-8.
    Giuliano, A., & Eilber, F. (1985). The rationale for planned reoperation after unplanned total excision of soft-tissue sarcomas. Journal of Clinical Oncology, 3(10), 1344-1348.
    Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing theory and Practice, 19(2), 139-152.
    Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the academy of marketing science, 43(1), 115-135.
    Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing. Advances in international marketing, 20, 277-319.
    Hsu, S.-H., Chen, W.-h., & Hsieh, M.-j. (2006). Robustness testing of PLS, LISREL, EQS and ANN-based SEM for measuring customer satisfaction. Total Quality Management & Business Excellence, 17(3), 355-372.
    Huang, C.-Y., Shyu, J. Z., & Tzeng, G.-H. (2007). Reconfiguring the innovation policy portfolios for Taiwan's SIP Mall industry. Technovation, 27(12), 744-765.
    Huber, F., Herrmann, A., Meyer, F., Vogel, J., & Vollhardt, K. (2008).Kausalmodellierung mit partial least squares: eine anwendungsorientierte einführung: Springer-Verlag.
    Hwang, C.-L., Paidy, S. R., Yoon, K., & Masud, A. S. M. (1980). Mathematical programming with multiple objectives: A tutorial. Computers & Operations Research, 7(1-2), 5-31.
    Jones, J., & Hunter, D. (1995). Consensus methods for medical and health services research. BMJ: British Medical Journal, 311(7001), 376.
    Judd, R. C. (1972). Forecasting to Consensus Gathering, Delphi Grows Up to College Needs. College and University Business.
    Khorramshahgol, R., & Steiner, H. M. (1988). Resource analysis in project evaluation: a multicriteria approach. Journal of the Operational Research Society, 39(9), 795-803.
    Lee, Y.-S., Huang, J.-C., & Hsu, Y.-S. (2008). Using modified delphi method to explore the competition strategy for software companies of Taiwan. Journal of Informatics & Electronics, 13(1), 39-50.
    Leinbach, T. R., & Cromley, R. G. (1983). A goal programming approach to public investment decisions: a case study of rural roads in Indonesia. Socio-Economic Planning Sciences, 17(1), 1-10.
    Lin, C.-L., Hsieh, M.-S., & Tzeng, G.-H. (2010). Evaluating vehicle telematics system by using a novel MCDM techniques with dependence and feedback. Expert systems with Applications, 37(10), 6723-6736.
    Linstone, H. A., & Turoff, M. (1975). The delphi method: Addison-Wesley Reading, MA.
    Liou, J. J., Tzeng, G.-H., & Chang, H.-C. (2007). Airline safety measurement using a hybrid model. Journal of air transport management, 13(4), 243- 249.
    Lowry, P. B., & Gaskin, J. (2014). Partial least squares (PLS) structural equation modeling (SEM) for building and testing behavioral causal theory: When to choose it and how to use it. IEEE transactions on professional communication, 57(2), 123-146.
    Massam, B. H. (1988). Multi-criteria decision making (MCDM) techniques in planning. Progress in planning, 30, 1-84.
    Phillips-Wren, G. (2010). Advances in Intelligent Decision Technologies: Proceedings of the Second KES International Symposium IDT 2010 (Vol. 4): Springer Science & Business Media.
    Ringle, C. M. (2004). Gütemaße für den Partial-least-squares-Ansatz zur Bestimmung von Kausalmodellen: Univ. Hamburg, Inst. für Industriebetriebslehre und Organisation, Arbeitsbereich Industrielles Management.
    Saaty, T. (1990). The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation. The Analytic Hierarchy Process Series, vol. I: RWS Publications, Pittsburgh, USA.
    Sung, W.-C. (2001). Application of Delphi method, a qualitative and quantitative analysis, to the healthcare management. Journal of Healthcare Management, 2(2), 11-19.
    Tamura, M., Nagata, H., & Akazawa, K. (2002). Extraction and systems analysis of factors that prevent safety and security by structural models. Paper presented at the SICE 2002. Proceedings of the 41st SICE Annual Conference.
    Teng, J.-Y., & Tzeng, G.-H. (1996). A multiobjective programming approach for selecting non-independent transportation investment alternatives. TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 30(4), 291-307.
    Tzeng, G.-H. (2013). Multiple Objective Decision Making in Past. Multi- Objective Programming and Goal Programming: Theory and Applications, 21, 65.
    Tzeng, G.-H., Chiang, C.-H., & Li, C.-W. (2007). Evaluating intertwined effects in e-learning programs: A novel hybrid MCDM model based on factor analysis and DEMATEL. Expert systems with Applications, 32(4), 1028- 1044.
    Urbach, N., & Ahlemann, F. (2010). Structural equation modeling in information systems research using partial least squares. Journal of Information technology theory and application, 11(2), 5-40.
    Willaby, H. W., Costa, D. S., Burns, B. D., MacCann, C., & Roberts, R. D. (2015). Testing complex models with small sample sizes: A historical overview and empirical demonstration of what partial least squares (PLS) can offer differential psychology. Personality and Individual Differences, 84, 73- 78.
    Won, J. (1990). Multicriteria evaluation approaches to urban transportation projects. Urban Studies, 27(1), 119-138.

    無法下載圖示 本全文未授權公開
    QR CODE