研究生: |
傅至偉 Fu, Chih-Wei |
---|---|
論文名稱: |
奈米金屬顆粒對廣鹽性青鱂魚離子細胞,毛細胞以及行為的毒性 Toxic effects of metal nanoparticles on ionocytes, hair cell and behavior in euryhaline medaka (Oryzias latipes) |
指導教授: |
林豊益
Lin, Li-Yih |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 66 |
中文關鍵詞: | 海水 、奈米銀 、奈米銅 、行為 、側線系統 、離子細胞 、排酸 |
英文關鍵詞: | seawater, silver nanoparticle, copper nanoparticle, behavior, lateral line, ionocyte, acid secretion |
DOI URL: | http://doi.org/10.6345/THE.NTNU.SLS.004.2019.D01 |
論文種類: | 學術論文 |
相關次數: | 點閱:264 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
含有奈米顆粒產品的廣泛使用,隨之產生的毒性也越受到關注,目前研究指出奈米顆粒進到環境中可能對生物造成危害。然而奈米顆粒在海水環境中對魚類的行為與生理功能的影響仍未被研究的很透徹。在本實驗中利用淡水跟海水馴養的青鱂魚(Oryzias latipes)仔魚進行奈米銀與奈米銅顆粒的毒性實驗,將馴養7天剛孵出來的仔魚浸泡在含有奈米顆粒 (0.1, 1, 10 ppm) 的水中四小時,然後分析仔魚的活動力、刺激游泳反應、側線毛細胞數目、離子細胞數目以及皮膚排酸量。在淡水組的實驗中發現奈米銀顆粒處理後,仔魚活動力顯著下降,毛細胞數目、離子細胞數目和皮膚排酸量也顯著下降,最大游泳速度與最大游泳加速度並沒有受到影響。奈米銅顆粒溶液浸泡後發現仔魚的毛細胞數目、離子細胞數目和皮膚排酸量顯著下降,游泳距離、最大游泳速度以及最大游泳加速度則發現在低濃度上升,高濃度下降的趨勢。在海水組的實驗發現,奈米銀顆粒處理後只有發現仔魚活動力以及排酸量下降。奈米銅顆粒處理後只有活動力下降而其他實驗則無統計差異。結果顯示在海水環境中奈米顆粒毒性較在淡水環境低。此外硝酸銀與硫酸銅進行毒性試驗也出現類似的毒性反應。
As products containing nanoparticles widely used, the toxicity caused by nanoparticles is more and more concerned. Nanoparticles could be released into the environments and may cause deleterious effects on the ecosystems. However, limited information exists concerning their toxic effects on the behavior and physiologic function of fish species dwelling in seawater. In this study, we investigated the acute toxicity of AgNPs and CuNPs in both freshwaters (FW) - and seawater (SW) - acclimated medaka (Oryzias latipes) larvae. Newly hatched larvae (7 dpf) were subjected to a 4 h AgNPs or CuNPs (0.1, 1, or 10 ppm) exposure and then their locomotion activities (swimming distance), touch-evoked responses (maximal velocity/acceleration of swimming), the number of neuromat hair cells, the number of yolk-sac ionocytes and ability of acid secretion were analyzed. In FW groups, results showed that AgNPs exposure decreased the locomotion activity, number of hair cell and ionocyte, and acid secretion. Maximal acceleration and velocity were not affected after AgNPs exposure. Similarly, CuNPs exposure decreased the number of hair cell and ionocyte, and acid secretion. Interestingly, maximal acceleration and velocity were increased at low concentrations of CuNPs but decreased at high concentrations of CuNPs. In SW groups, AgNPs exposure only decreased the locomotion activity and acid secretion; CuNPs exposure only decreased the locomotion activity. In conclusion, AgNPs and CuNPs pose higher threat to FW than in SW-acclimated larvae. Similar results were also found in larvae exposed to AgNO3 and CuSO4.
Adeleye, A.S., Conway, J.R., Perez, T., Rutten, P. & Keller, A.A. (2014) Influence of extracellular polymeric substances on the long-term fate, dissolution, and speciation of copper-based nanoparticles. Environ Sci Technol, 48, 12561-12568.
Arora, S., Jain, J., Rajwade, J.M. & Paknikar, K.M. (2008) Cellular responses induced by silver nanoparticles: In vitro studies. Toxicol Lett, 179, 93-100.
Arora, S., Jain, J., Rajwade, J.M. & Paknikar, K.M. (2009) Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicol Appl Pharmacol, 236, 310-318.
Asharani, P.V., Lian Wu, Y., Gong, Z. & Valiyaveettil, S. (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology, 19, 255102.
Asmonaite, G., Boyer, S., Souza, K.B., Wassmur, B. & Sturve, J. (2016) Behavioural toxicity assessment of silver ions and nanoparticles on zebrafish using a locomotion profiling approach. Aquat Toxicol, 173, 143-153.
Bae, M.J. & Park, Y.S. (2014) Biological early warning system based on the responses of aquatic organisms to disturbances: a review. Sci Total Environ, 466-467, 635-649.
Bak-Coleman, J. & Coombs, S. (2014) Sedentary behavior as a factor in determining lateral line contributions to rheotaxis. J Exp Biol, 217, 2338-2347.
Bak-Coleman, J., Court, A., Paley, D.A. & Coombs, S. (2013) The spatiotemporal dynamics of rheotactic behavior depends on flow speed and available sensory information. J Exp Biol, 216, 4011-4024.
Bian, S.W., Mudunkotuwa, I.A., Rupasinghe, T. & Grassian, V.H. (2011) Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid. Langmuir, 27, 6059-6068.
Bianchini, A. & Wood, C.M. (2002) Physiological effects of chronic silver exposure in Daphnia magna. Comp Biochem Physiol C Toxicol Pharmacol, 133, 137-145.
Bilberg, K., Malte, H., Wang, T. & Baatrup, E. (2010) Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis). Aquat Toxicol, 96, 159-165.
Blaser, R.E. & Penalosa, Y.M. (2011) Stimuli affecting zebrafish (Danio rerio) behavior in the light/dark preference test. Physiol Behav, 104, 831-837.
Bleckmann, H. & Zelick, R. (2009) Lateral line system of fish. Integr Zool, 4, 13-25.
Calabrese, E.J. & Baldwin, L.A. (2002) Defining hormesis. Hum Exp Toxicol, 21, 91-97.
Cha, K., Hong, H.W., Choi, Y.G., Lee, M.J., Park, J.H., Chae, H.K., Ryu, G. & Myung, H. (2008) Comparison of acute responses of mice livers to short-term exposure to nano-sized or micro-sized silver particles. Biotechnol Lett, 30, 1893-1899.
Chae, Y.J., Pham, C.H., Lee, J., Bae, E., Yi, J. & Gu, M.B. (2009) Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes). Aquat Toxicol, 94, 320-327.
Chen, J., Chen, Y., Liu, W., Bai, C., Liu, X., Liu, K., Li, R., Zhu, J.H. & Huang, C. (2012) Developmental lead acetate exposure induces embryonic toxicity and memory deficit in adult zebrafish. Neurotoxicol Teratol, 34, 581-586.
Chen, Z., Meng, H., Xing, G., Chen, C., Zhao, Y., Jia, G., Wang, T., Yuan, H., Ye, C., Zhao, F., Chai, Z., Zhu, C., Fang, X., Ma, B. & Wan, L. (2006) Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett, 163, 109-120.
Chi, Z., Liu, R., Zhao, L., Qin, P., Pan, X., Sun, F. & Hao, X. (2009) A new strategy to probe the genotoxicity of silver nanoparticles combined with cetylpyridine bromide. Spectrochim Acta A Mol Biomol Spectrosc, 72, 577-581.
Cho, J.G., Kim, K.T., Ryu, T.K., Lee, J.W., Kim, J.E., Kim, J., Lee, B.C., Jo, E.H., Yoon, J., Eom, I.C., Choi, K. & Kim, P. (2013) Stepwise embryonic toxicity of silver nanoparticles on Oryzias latipes. Biomed Res Int, 2013, 494671.
Choi, J.E., Kim, S., Ahn, J.H., Youn, P., Kang, J.S., Park, K., Yi, J. & Ryu, D.Y. (2010) Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat Toxicol, 100, 151-159.
Chon, T.S., Chung, N., Kwak, I.S., Kim, J.S., Koh, S.C., Lee, S.K., Leem, J.B. & Cha, E.Y. (2005) Movement behaviour of Medaka (Oryzias latipes) in response to sublethal treatments of diazinon and cholinesterase activity in semi-natural conditions. Environ Monit Assess, 101, 1-21.
Chowdhury, M.J., Girgis, M. & Wood, C.M. (2016) Revisiting the mechanisms of copper toxicity to rainbow trout: Time course, influence of calcium, unidirectional Na+ fluxes, and branchial Na+/ K+- ATPase and V-type H+ ATPase activities. Aquat Toxicol, 177, 51-62.
Cioffi, N., Ditaranto, N., Torsi, L., Picca, R.A., De Giglio, E., Sabbatini, L., Novello, L., Tantillo, G., Bleve-Zacheo, T. & Zambonin, P.G. (2005) Synthesis, analytical characterization and bioactivity of Ag and Cu nanoparticles embedded in poly-vinyl-methyl-ketone films. Anal Bioanal Chem, 382, 1912-1918.
Colvin, V.L. (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol, 21, 1166-1170.
Colwill, R.M. & Creton, R. (2011) Locomotor behaviors in zebrafish (Danio rerio) larvae. Behav Processes, 86, 222-229.
Conway, J.R., Adeleye, A.S., Gardea-Torresdey, J. & Keller, A.A. (2015) Aggregation, dissolution, and transformation of copper nanoparticles in natural waters. Environ Sci Technol, 49, 2749-2756.
Cuenca, A.G., Jiang, H., Hochwald, S.N., Delano, M., Cance, W.G. & Grobmyer, S.R. (2006) Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer, 107, 459-466.
Dave, G. & Xiu, R.Q. (1991) Toxicity of mercury, copper, nickel, lead, and cobalt to embryos and larvae of zebrafish, Brachydanio rerio. Arch Environ Contam Toxicol, 21, 126-134.
De Boeck, G., van der Ven, K., Hattink, J. & Blust, R. (2006) Swimming performance and energy metabolism of rainbow trout, common carp and gibel carp respond differently to sublethal copper exposure. Aquat Toxicol, 80, 92-100.
Edwards-Jones, V. (2009) The benefits of silver in hygiene, personal care and healthcare. Lett Appl Microbiol, 49, 147-152.
Evans, D.H. (1987) The fish gill: site of action and model for toxic effects of environmental pollutants. Environ Health Perspect, 71, 47-58.
Evans, D.H., Piermarini, P.M. & Choe, K.P. (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev, 85, 97-177.
Faucher, K., Fichet, D., Miramand, P. & Lagardere, J.P. (2006) Impact of acute cadmium exposure on the trunk lateral line neuromasts and consequences on the "C-start" response behaviour of the sea bass (Dicentrarchus labrax L.; Teleostei, Moronidae). Aquat Toxicol, 76, 278-294.
French, R.A., Jacobson, A.R., Kim, B., Isley, S.L., Penn, R.L. & Baveye, P.C. (2009) Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environ Sci Technol, 43, 1354-1359.
Froehlicher, M., Liedtke, A., Groh, K.J., Neuhauss, S.C., Segner, H. & Eggen, R.I. (2009) Zebrafish (Danio rerio) neuromast: promising biological endpoint linking developmental and toxicological studies. Aquat Toxicol, 95, 307-319.
Gale, J.E., Marcotti, W., Kennedy, H.J., Kros, C.J. & Richardson, G.P. (2001) FM1-43 dye behaves as a permeant blocker of the hair-cell mechanotransducer channel. J Neurosci, 21, 7013-7025.
Ganesh, R., Smeraldi, J., Hosseini, T., Khatib, L., Olson, B.H. & Rosso, D. (2010) Evaluation of nanocopper removal and toxicity in municipal wastewaters. Environ Sci Technol, 44, 7808-7813.
Gerlai, R., Lee, V. & Blaser, R. (2006) Effects of acute and chronic ethanol exposure on the behavior of adult zebrafish (Danio rerio). Pharmacol Biochem Behav, 85, 752-761.
Gomes, T., Pinheiro, J.P., Cancio, I., Pereira, C.G., Cardoso, C. & Bebianno, M.J. (2011) Effects of copper nanoparticles exposure in the mussel Mytilus galloprovincialis. Environ Sci Technol, 45, 9356-9362.
Gopinath, P., Gogoi, S.K., Sanpui, P., Paul, A., Chattopadhyay, A. & Ghosh, S.S. (2010) Signaling gene cascade in silver nanoparticle induced apoptosis. Colloids Surf B Biointerfaces, 77, 240-245.
Griffitt, R.J., Hyndman, K., Denslow, N.D. & Barber, D.S. (2009) Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol Sci, 107, 404-415.
Griffitt, R.J., Weil, R., Hyndman, K.A., Denslow, N.D., Powers, K., Taylor, D. & Barber, D.S. (2007) Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Technol, 41, 8178-8186.
Groh, K.J., Dalkvist, T., Piccapietra, F., Behra, R., Suter, M.J. & Schirmer, K. (2015) Critical influence of chloride ions on silver ion-mediated acute toxicity of silver nanoparticles to zebrafish embryos. Nanotoxicology, 9, 81-91.
Groneberg, D.A., Giersig, M., Welte, T. & Pison, U. (2006) Nanoparticle-based diagnosis and therapy. Curr Drug Targets, 7, 643-648.
Grosell, M., Blanchard, J., Brix, K.V. & Gerdes, R. (2007) Physiology is pivotal for interactions between salinity and acute copper toxicity to fish and invertebrates. Aquat Toxicol, 84, 162-172.
Grosell, M., Hogstrand, C., Wood, C.M. & Hansen, H.J. (2000) A nose-to-nose comparison of the physiological effects of exposure to ionic silver versus silver chloride in the European eel (Anguilla anguilla) and the rainbow trout (Oncorhynchus mykiss). Aquat Toxicol, 48, 327-342.
Grosell, M., Nielsen, C. & Bianchini, A. (2002) Sodium turnover rate determines sensitivity to acute copper and silver exposure in freshwater animals. Comp Biochem Physiol C Toxicol Pharmacol, 133, 287-303.
Grosell, M. & Wood, C.M. (2002) Copper uptake across rainbow trout gills: mechanisms of apical entry. J Exp Biol, 205, 1179-1188.
Gurr, J.R., Wang, A.S., Chen, C.H. & Jan, K.Y. (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology, 213, 66-73.
Handy, R.D. (2003) Chronic effects of copper exposure versus endocrine toxicity: two sides of the same toxicological process? Comp Biochem Physiol A Mol Integr Physiol, 135, 25-38.
Handy, R.D., Eddy, F.B. & Baines, H. (2002) Sodium-dependent copper uptake across epithelia: a review of rationale with experimental evidence from gill and intestine. Biochim Biophys Acta, 1566, 104-115.
Harris, J.A., Cheng, A.G., Cunningham, L.L., MacDonald, G., Raible, D.W. & Rubel, E.W. (2003) Neomycin-induced hair cell death and rapid regeneration in the lateral line of zebrafish (Danio rerio). J Assoc Res Otolaryngol, 4, 219-234.
Hernandez, P.P., Moreno, V., Olivari, F.A. & Allende, M.L. (2006) Sub-lethal concentrations of waterborne copper are toxic to lateral line neuromasts in zebrafish (Danio rerio). Hear Res, 213, 1-10.
Hirose, S., Kaneko, T., Naito, N. & Takei, Y. (2003) Molecular biology of major components of chloride cells. Comp Biochem Physiol B Biochem Mol Biol, 136, 593-620.
Hobe, H., Wood, C.M. & Wheatly, M.G. (1984) The mechanisms of acid-base and ionoregulation in the freshwater rainbow trout during environmental hyperoxia and subsequent normoxia. I. Extra- and intracellular acid-base status. Respir Physiol, 55, 139-154.
Hotze, E.M., Phenrat, T. & Lowry, G.V. (2010) Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J Environ Qual, 39, 1909-1924.
Howard, J. & Hudspeth, A.J. (1988) Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog's saccular hair cell. Neuron, 1, 189-199.
Hsin, Y.H., Chen, C.F., Huang, S., Shih, T.S., Lai, P.S. & Chueh, P.J. (2008) The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett, 179, 130-139.
Hsu, H.H., Lin, L.Y., Tseng, Y.C., Horng, J.L. & Hwang, P.P. (2014) A new model for fish ion regulation: identification of ionocytes in freshwater- and seawater-acclimated medaka (Oryzias latipes). Cell Tissue Res, 357, 225-243.
Hussain, S.M., Hess, K.L., Gearhart, J.M., Geiss, K.T. & Schlager, J.J. (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro, 19, 975-983.
Hwang, P.P. (2009) Ion uptake and acid secretion in zebrafish (Danio rerio). J Exp Biol, 212, 1745-1752.
Hwang, P.P. & Lee, T.H. (2007) New insights into fish ion regulation and mitochondrion-rich cells. Comp Biochem Physiol A Mol Integr Physiol, 148, 479-497.
Inoue, K. & Takei, Y. (2003) Asian medaka fishes offer new models for studying mechanisms of seawater adaptation. Comp Biochem Physiol B Biochem Mol Biol, 136, 635-645.
Irons, T.D., MacPhail, R.C., Hunter, D.L. & Padilla, S. (2010) Acute neuroactive drug exposures alter locomotor activity in larval zebrafish. Neurotoxicol Teratol, 32, 84-90.
Jin, X., Li, M., Wang, J., Marambio-Jones, C., Peng, F., Huang, X., Damoiseaux, R. & Hoek, E.M. (2010) High-throughput screening of silver nanoparticle stability and bacterial inactivation in aquatic media: influence of specific ions. Environ Sci Technol, 44, 7321-7328.
Johnson, A., Carew, E. & Sloman, K.A. (2007) The effects of copper on the morphological and functional development of zebrafish embryos. Aquat Toxicol, 84, 431-438.
Johnson, L.V., Walsh, M.L. & Chen, L.B. (1980) Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci U S A, 77, 990-994.
Joo, H.S., Kalbassi, M.R. & Johari, S.A. (2018) Hematological and histopathological effects of silver nanoparticles in rainbow trout (Oncorhynchus mykiss)-how about increase of salinity? Environ Sci Pollut Res Int, 25, 15449-15461.
Kashiwada, S., Ariza, M.E., Kawaguchi, T., Nakagame, Y., Jayasinghe, B.S., Gartner, K., Nakamura, H., Kagami, Y., Sabo-Attwood, T., Ferguson, P.L. & Chandler, G.T. (2012) Silver nanocolloids disrupt medaka embryogenesis through vital gene expressions. Environ Sci Technol, 46, 6278-6287.
Kataoka, C. & Kashiwada, S. (2016) Salinity-dependent Toxicity Assay of Silver Nanocolloids Using Medaka Eggs. J Vis Exp, 109, e53550.
Kato, S., Tamada, K., Shimada, Y. & Chujo, T. (1996) A quantification of goldfish behavior by an image processing system. Behav Brain Res, 80, 51-55.
Keller, A.A., Wang, H., Zhou, D., Lenihan, H.S., Cherr, G., Cardinale, B.J., Miller, R. & Ji, Z. (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol, 44, 1962-1967.
Kim, Y.S., Kim, J.S., Cho, H.S., Rha, D.S., Kim, J.M., Park, J.D., Choi, B.S., Lim, R., Chang, H.K., Chung, Y.H., Kwon, I.H., Jeong, J., Han, B.S. & Yu, I.J. (2008) Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol, 20, 575-583.
Kirschner, L.B. (2004) The mechanism of sodium chloride uptake in hyperregulating aquatic animals. J Exp Biol, 207, 1439-1452.
Klaine, S.J., Alvarez, P.J., Batley, G.E., Fernandes, T.F., Handy, R.D., Lyon, D.Y., Mahendra, S., McLaughlin, M.J. & Lead, J.R. (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem, 27, 1825-1851.
Klyce, S.D. & Marshall, W.S. (1982) Effects of Ag+ on ion transport by the corneal epithelium of the rabbit. J Membr Biol, 66, 133-144.
Lee, K.J., Nallathamby, P.D., Browning, L.M., Osgood, C.J. & Xu, X.H. (2007) In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano, 1, 133-143.
Lei, R., Wu, C., Yang, B., Ma, H., Shi, C., Wang, Q., Wang, Q., Yuan, Y. & Liao, M. (2008) Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: a rapid in vivo screening method for nanotoxicity. Toxicol Appl Pharmacol, 232, 292-301.
Li, J., Lock, R.A., Klaren, P.H., Swarts, H.G., Schuurmans Stekhoven, F.M., Wendelaar Bonga, S.E. & Flik, G. (1996) Kinetics of Cu2+ inhibition of Na+/K+-ATPase. Toxicol Lett, 87, 31-38.
Li, X., Lenhart, J.J. & Walker, H.W. (2010) Dissolution-accompanied aggregation kinetics of silver nanoparticles. Langmuir, 26, 16690-16698.
Li, X., Liu, B., Li, X.L., Li, Y.X., Sun, M.Z., Chen, D.Y., Zhao, X. & Feng, X.Z. (2014) SiO2 nanoparticles change colour preference and cause Parkinson's-like behaviour in zebrafish. Sci Rep, 4, 3810.
Liao, P.H., Hwang, C.C., Chen, T.H. & Chen, P.J. (2015) Developmental exposures to waterborne abused drugs alter physiological function and larval locomotion in early life stages of medaka fish. Aquat Toxicol, 165, 84-92.
Lichtenstein, D., Ebmeyer, J., Meyer, T., Behr, A.C., Kastner, C., Bohmert, L., Juling, S., Niemann, B., Fahrenson, C., Selve, S., Thunemann, A.F., Meijer, J., Estrela-Lopis, I., Braeuning, A. & Lampen, A. (2017) It takes more than a coating to get nanoparticles through the intestinal barrier in vitro. Eur J Pharm Biopharm, 118, 21-29.
Linbo, T.L., Stehr, C.M., Incardona, J.P. & Scholz, N.L. (2006) Dissolved copper triggers cell death in the peripheral mechanosensory system of larval fish. Environ Toxicol Chem, 25, 597-603.
Masud, S., Singh, I.J. & Ram, R.N. (2005) Behavioural and hematological responses of Cyprinus carpio exposed to mercurial chloride. J Environ Biol, 26, 393-397.
Matson, C.W., Bone, A.J., Auffan, M., Lindberg, T.T., Arnold, M.C., Hsu-Kim, H., Wiesner, M.R. & Di Giulio, R.T. (2016) Silver toxicity across salinity gradients: the role of dissolved silver chloride species (AgCl x ) in Atlantic killifish (Fundulus heteroclitus) and medaka (Oryzias latipes) early life-stage toxicity. Ecotoxicology, 25, 1105-1118.
McHenry, M.J., Feitl, K.E., Strother, J.A. & Van Trump, W.J. (2009) Larval zebrafish rapidly sense the water flow of a predator's strike. Biol Lett, 5, 477-479.
McNeil, P.L., Boyle, D., Henry, T.B., Handy, R.D. & Sloman, K.A. (2014) Effects of metal nanoparticles on the lateral line system and behaviour in early life stages of zebrafish (Danio rerio). Aquat Toxicol, 152, 318-323.
Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ramirez, J.T. & Yacaman, M.J. (2005) The bactericidal effect of silver nanoparticles. Nanotechnology, 16, 2346-2353.
New, J.G., Alborg Fewkes, L. & Khan, A.N. (2001) Strike feeding behavior in the muskellunge, Esox masquinongy: contributions of the lateral line and visual sensory systems. J Exp Biol, 204, 1207-1221.
Nichols, J.W., Brown, S., Wood, C.M., Walsh, P.J. & Playle, R.C. (2006) Influence of salinity and organic matter on silver accumulation in Gulf toadfish (Opsanus beta). Aquat Toxicol, 78, 253-261.
Niihori, M., Platto, T., Igarashi, S., Hurbon, A., Dunn, A.M., Tran, P., Tran, H., Mudery, J.A., Slepian, M.J. & Jacob, A. (2015) Zebrafish swimming behavior as a biomarker for ototoxicity-induced hair cell damage: a high-throughput drug development platform targeting hearing loss. Transl Res, 166, 440-450.
Oberdorster, G., Oberdorster, E. & Oberdorster, J. (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect, 113, 823-839.
Olivari, F.A., Hernandez, P.P. & Allende, M.L. (2008) Acute copper exposure induces oxidative stress and cell death in lateral line hair cells of zebrafish larvae. Brain Res, 1244, 1-12.
Olive, R., Wolf, S., Dubreuil, A., Bormuth, V., Debregeas, G. & Candelier, R. (2016) Rheotaxis of Larval Zebrafish: Behavioral Study of a Multi-Sensory Process. Front Syst Neurosci, 10, 14.
Osborne, O.J., Lin, S., Chang, C.H., Ji, Z., Yu, X., Wang, X., Lin, S., Xia, T. & Nel, A.E. (2015) Organ-Specific and Size-Dependent Ag Nanoparticle Toxicity in Gills and Intestines of Adult Zebrafish. ACS Nano, 9, 9573-9584.
Ou, H.C., Raible, D.W. & Rubel, E.W. (2007) Cisplatin-induced hair cell loss in zebrafish (Danio rerio) lateral line. Hear Res, 233, 46-53.
Panda, K.K., Achary, V.M., Krishnaveni, R., Padhi, B.K., Sarangi, S.N., Sahu, S.N. & Panda, B.B. (2011) In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicol In Vitro, 25, 1097-1105.
Park, Y.S., Chung, N.I., Choi, K.H., Cha, E.Y., Lee, S.K. & Chon, T.S. (2005) Computational characterization of behavioral response of medaka (Oryzias latipes) treated with diazinon. Aquat Toxicol, 71, 215-228.
Peng, C., Zhang, W., Gao, H., Li, Y., Tong, X., Li, K., Zhu, X., Wang, Y. & Chen, Y. (2017) Behavior and Potential Impacts of Metal-Based Engineered Nanoparticles in Aquatic Environments. Nanomaterials (Basel), 7, 21-53
Powers, C.M., Levin, E.D., Seidler, F.J. & Slotkin, T.A. (2011a) Silver exposure in developing zebrafish produces persistent synaptic and behavioral changes. Neurotoxicol Teratol, 33, 329-332.
Powers, C.M., Slotkin, T.A., Seidler, F.J., Badireddy, A.R. & Padilla, S. (2011b) Silver nanoparticles alter zebrafish development and larval behavior: distinct roles for particle size, coating and composition. Neurotoxicol Teratol, 33, 708-714.
Prabhu, B.M., Ali, S.F., Murdock, R.C., Hussain, S.M. & Srivatsan, M. (2010) Copper nanoparticles exert size and concentration dependent toxicity on somatosensory neurons of rat. Nanotoxicology, 4, 150-160.
Puzdrowski, R.L. (1989) Peripheral distribution and central projections of the lateral-line nerves in goldfish, Carassius auratus. Brain Behav Evol, 34, 110-131.
Rahman, M.F., Wang, J., Patterson, T.A., Saini, U.T., Robinson, B.L., Newport, G.D., Murdock, R.C., Schlager, J.J., Hussain, S.M. & Ali, S.F. (2009) Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles. Toxicol Lett, 187, 15-21.
Saili, K.S., Corvi, M.M., Weber, D.N., Patel, A.U., Das, S.R., Przybyla, J., Anderson, K.A. & Tanguay, R.L. (2012) Neurodevelopmental low-dose bisphenol A exposure leads to early life-stage hyperactivity and learning deficits in adult zebrafish. Toxicology, 291, 83-92.
Schmitz, A., Bleckmann, H. & Mogdans, J. (2008) Organization of the superficial neuromast system in goldfish, Carassius auratus. J Morphol, 269, 751-761.
Schultz, A.G., Ong, K.J., MacCormack, T., Ma, G., Veinot, J.G. & Goss, G.G. (2012) Silver nanoparticles inhibit sodium uptake in juvenile rainbow trout (Oncorhynchus mykiss). Environ Sci Technol, 46, 10295-10301.
Scott, G.R. & Sloman, K.A. (2004) The effects of environmental pollutants on complex fish behaviour: integrating behavioural and physiological indicators of toxicity. Aquat Toxicol, 68, 369-392.
Scown, T.M., Santos, E.M., Johnston, B.D., Gaiser, B., Baalousha, M., Mitov, S., Lead, J.R., Stone, V., Fernandes, T.F., Jepson, M., van Aerle, R. & Tyler, C.R. (2010) Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol Sci, 115, 521-534.
Song, L., Vijver, M.G., Peijnenburg, W.J., Galloway, T.S. & Tyler, C.R. (2015) A comparative analysis on the in vivo toxicity of copper nanoparticles in three species of freshwater fish. Chemosphere, 139, 181-189.
Strausak, D., Mercer, J.F., Dieter, H.H., Stremmel, W. & Multhaup, G. (2001) Copper in disorders with neurological symptoms: Alzheimer's, Menkes, and Wilson diseases. Brain Res Bull, 55, 175-185.
Suli, A., Watson, G.M., Rubel, E.W. & Raible, D.W. (2012) Rheotaxis in larval zebrafish is mediated by lateral line mechanosensory hair cells. PLoS One, 7, e29727.
Sztal, T.E., Ruparelia, A.A., Williams, C. & Bryson-Richardson, R.J. (2016) Using Touch-evoked Response and Locomotion Assays to Assess Muscle Performance and Function in Zebrafish. J Vis Exp, 116, e54431.
Tilton, F.A., Bammler, T.K. & Gallagher, E.P. (2011) Swimming impairment and acetylcholinesterase inhibition in zebrafish exposed to copper or chlorpyrifos separately, or as mixtures. Comp Biochem Physiol C Toxicol Pharmacol, 153, 9-16.
Torres-Duarte, C., Adeleye, A.S., Pokhrel, S., Madler, L., Keller, A.A. & Cherr, G.N. (2016) Developmental effects of two different copper oxide nanomaterials in sea urchin (Lytechinus pictus) embryos. Nanotoxicology, 10, 671-679.
Van Trump, W.J., Coombs, S., Duncan, K. & McHenry, M.J. (2010) Gentamicin is ototoxic to all hair cells in the fish lateral line system. Hear Res, 261, 42-50.
Van Trump, W.J. & McHenry, M.J. (2008) The morphology and mechanical sensitivity of lateral line receptors in zebrafish larvae (Danio rerio). J Exp Biol, 211, 2105-2115.
Ward, T.J., Boeri, R.L., Hogstrand, C., Kramer, J.R., Lussier, S.M., Stubblefield, W.A., Wyskiel, D.C. & Gorsuch, J.W. (2006) Influence of salinity and organic carbon on the chronic toxicity of silver to mysids (Americamysis bahia) and silversides (Menidia beryllina). Environ Toxicol Chem, 25, 1809-1816.
Watari, F., Takashi, N., Yokoyama, A., Uo, M., Akasaka, T., Sato, Y., Abe, S., Totsuka, Y. & Tohji, K. (2009) Material nanosizing effect on living organisms: non-specific, biointeractive, physical size effects. J R Soc Interface, 6, S371-388.
Webb, J.F. (1989) Gross morphology and evolution of the mechanoreceptive lateral-line system in teleost fishes. Brain Behav Evol, 33, 34-53.
Webb, J.F. & Shirey, J.E. (2003) Postembryonic development of the cranial lateral line canals and neuromasts in zebrafish. Dev Dyn, 228, 370-385.
Webb, N.A. & Wood, C.M. (2000) Bioaccumulation and distribution of silver in four marine teleosts and two marine elasmobranchs: influence of exposure duration, concentration, and salinity. Aquat Toxicol, 49, 111-129.
Williams, J.A. & Holder, N. (2000) Cell turnover in neuromasts of zebrafish larvae. Hear Res, 143, 171-181.
Windham, G.C., Zhang, L., Gunier, R., Croen, L.A. & Grether, J.K. (2006) Autism spectrum disorders in relation to distribution of hazardous air pollutants in the san francisco bay area. Environ Health Perspect, 114, 1438-1444.
Wise, J.P., Sr., Goodale, B.C., Wise, S.S., Craig, G.A., Pongan, A.F., Walter, R.B., Thompson, W.D., Ng, A.K., Aboueissa, A.M., Mitani, H., Spalding, M.J. & Mason, M.D. (2010) Silver nanospheres are cytotoxic and genotoxic to fish cells. Aquat Toxicol, 97, 34-41.
Wood, C.M., Gilmour, K.M. & Part, P. (1998) Passive and active transport properties of a gill model, the cultured branchial epithelium of the freshwater rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol A Mol Integr Physiol, 119, 87-96.
Wu, Y., Zhou, Q., Li, H., Liu, W., Wang, T. & Jiang, G. (2010) Effects of silver nanoparticles on the development and histopathology biomarkers of Japanese medaka (Oryzias latipes) using the partial-life test. Aquat Toxicol, 100, 160-167.
Yoo, M.H., Rah, Y.C., Choi, J., Park, S., Park, H.C., Oh, K.H., Lee, S.H. & Kwon, S.Y. (2016) Embryotoxicity and hair cell toxicity of silver nanoparticles in zebrafish embryos. Int J Pediatr Otorhinolaryngology, 83, 168-174.
Yue, Y., Behra, R., Sigg, L. & Schirmer, K. (2016) Silver nanoparticles inhibit fish gill cell proliferation in protein-free culture medium. Nanotoxicology, 10, 1075-1083.
Zimmer, A.M., Barcarolli, I.F., Wood, C.M. & Bianchini, A. (2012) Waterborne copper exposure inhibits ammonia excretion and branchial carbonic anhydrase activity in euryhaline guppies acclimated to both fresh water and sea water. Aquat Toxicol, 122-123, 172-180.