簡易檢索 / 詳目顯示

研究生: 吳東翰
Tung-Han, Wu
論文名稱: 應用於電泳顯示器及堆疊型立體積體電路之薄膜電晶體
The Thin-Film-Transistors (TFTs) for the Application of Electrophoretic Display (EPD) and Monolithic Three Dimension Integrated Circuit (3D-IC)
指導教授: 李敏鴻
Lee, Min-Hung
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 80
中文關鍵詞: 多晶矽薄膜電晶體軟性基板
英文關鍵詞: Poly-Si, TFT, flexible
論文種類: 學術論文
相關次數: 點閱:110下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人性化、行動化與個人化一直是電子產品的發展趨勢,因此具有容易維護、攜帶方便、觸感舒適、耗能低、可以自由捲曲等特點的多功能數位化電子產品將成為發展的主流,然而,傳統以「矽基板」與「玻璃基板」為主的電子技術已無法滿足這些需求,故在未來應用在可攜式消費性電子產品,朝向輕、薄、可撓曲的特性發展,因此開發出軟性高可靠度電晶體製程,實為關鍵之技術,軟性電子技術被譽為改變人類未來的重要技術之一。而本論文就是利用模擬軟體模擬各種不同的參數,並搭配各種不同狀況下的實際量測來得到並呈現TFT本身於撓曲狀態下的應力分佈與建立完整的電與力模型。
    而未來 IC 設計上面,3D-ICs 的結構適合用於 IC 設計,可以減少製程面積。在 3D-ICs 的連續製程上,不用元件的連接線的製程,相較之下可以減少製程上的成本,根據平面顯示器的經驗,多晶矽薄膜電晶體有較低的製程溫度,在 3D-ICs 的結構上面,低溫有利於基底下的元件,不受溫度而改變。而本論文在 High-k 材料的選擇中,利用了HfO2,而HfO2在氧化層上的運用廣泛,原因是有高的介電質約為 25、耐熱性高、能隙大使做出來的元件特性更佳。

    Humanity, mobility, and personalization have always been the trend of development regarding electronics. The features, such as the ease of maintenance, convenience of portability, comfort of touch, low degree of attrition, and ease of rolling, etc., will soon become the mainstream in the development of multi-functional electronics. However, the electronic techniques featuring traditional Si-wafer and glass substrate are not able to meet these requirements. With regard to this, the portable consumer electronics has a tendency to be light, thin, and bending. The development of high reliability of flexible transistor process is, therefore, one of the important techniques to influence the future. The purpose of this experiment is to simulate a variety of parameters with simulation software, with the mechanical measurement under different kinds of circumstances to both obtain and build the model. Moreover, concerning the design of IC, the structure of 3D-ICs is suitable for the design of IC, thus decreasing area. In the process of continuous manufacturing of 3D-ICs, the cost will be more likely to be reduced when it is operated without contact line. According to the experience of the Display, Poly-Si TFT holds much lower manufacturing temperature. For the structure of 3D-ICs, the cells in the base are not likely to transform due to the low temperature. Because of k-value is about 25, high endurance of heat, and wide bandgap, the property of cells works significantly better. Therefore, among the choice of High-k materials, this experiment adopted HfO2, which is widely used in oxide.

    Publication List ………………………………………………………I 圖目錄 …………………………………………………………………III 表目錄 ………………………………………………………………XIII 中文摘要 ……………………………………………………………XIV 英文摘要 ……………………………………………………………XV 致謝 …………………………………………………………………XVI 目錄 ………………………………………………………………XVII 第一章、 緒論 1-1 軟性顯示器撓曲之應力模擬及電性量測分析動機 ……………1 1-2 軟性顯示器撓曲之應力模擬及電性量測分析動機……………2 第二章、微杯型電泳軟性電子紙之應力模擬及電性量測分析 2-1前言…………………………………………………………………4 2-2元件結構 ……………………………………………………………4 2-2-1 實際元件結構…………………………………………………4 2-2-2應力分析模擬結構設計…………………………………………5 2-3 應力模擬結果分析…………………………………………………8 2-3-1撓曲曲率變化……………………………………………………8 2-3-2 TFT尺寸相關性………………………………………………11 2-3-3楊氏系數………………………………………………………12 2-3-4材料內部應力(intrinsic stress) ………………………………14 2-3-5實際電子書/電子紙應力狀態(疊上EPD)……………………17 2-3-6 TFT結構應力分析……………………………………………20 2-3-6-1 Dual Gate 結構 TFT……………………………………20 2-3-6-2 Top Gate 結構 TFT………………………………………23 2-3-6-3 Bottom gate、top gate、dual gate三種結構應力比較…26 2-3-7 UHA布局………………………………………………………28 2-3-8 SiN布局………………………………………………………30 2-4 電性量測分析(2010) ……………………………………………32 2-4-1 有無玻璃基板支撐(取下前後比較) ………………………32 2-4-2實際元件應力下電性討論……………………………………33 2-4-2-1實驗裝置…………………………………………………33 2-4-2-2 應力下電性行為…………………………………………33 2-4-2-3缺陷討論…………………………………………………37 2-4-2-4撓曲之穩定度(多次撓曲) ………………………………40 2-4-2-5缺陷復原 - Thermal Recovery…………………………42 2-4-2-6實際元件之高壓討論……………………………………43 2-5 電性量測分析(2011) ……………………………………………46 2-5-1有無玻璃基板支撐……………………………………………46 2-5-2應力下電性行為………………………………………………47 2-5-3撓曲之穩定度…………………………………………………50 2-5-4實際元件之高壓討論…………………………………………52 2-5-5 實際元件回復驗證結果………………………………………54 2-6 結論………………………………………………………………55 第三章、多晶矽薄膜電晶體之製作與電性分析 3-1前言…………………………………………………………………57 3-2高介電常數氧化鉿與金屬閘極之多晶矽薄膜電晶體製作………58 3-3多晶矽薄膜電晶體之電性量測……………………………………61 3-3-1 不同退火溫度之電性分析……………………………………61 3-3-2 C-V量測分析…………………………………………………64 3-3-3 不同通道長度之電性分析……………………………………66 3-3-4 平行與垂直晶界之電性分析…………………………………68 3-4 多晶矽基板之霍爾量測…………………………………………70 3-5 結論………………………………………………………………71 第四章、結論與未來工作 4-1 結論………………………………………………………………72 4-1-1 電泳顯示器之薄膜電晶體…………………………………72 4-1-2 多晶矽薄膜電晶體……………………………………………72 4-2 未來工作…………………………………………………………72 參考資料………………………………………………………………74 附錄……………………………………………………………………78

    [1] K. McGoldrik, “Mobile Freedom,” USDC 5th Flexible Displays & Microelectronics Conference & Exhibits, 2006, Phoenix, Az
    [2] B. A. MacDonald, K. Rollins, D. MacKerron, K. Rakos, R. Eveson, K. Hashimoto, and B. Rustin, “Engineered Films for Display Technologies, ” from Flexible Flat Panel Displays, John Wiley & Sons, Ltd., 2005, Chichester, G. P. Crawford, Editor, Chapter 2.
    [3] P. Kazlas, J. Au, K Geramita, H. Gates, M. Steiner, C. Honeyman, P. Drzaic, “12.1" SVGA Microencapsulated Electrophoretic Active Matrix Display for Information Appliances, ” SID, pp. 152-155, 2001.
    [4] A. Henzen, J. van de Kamer, T. Nakamura, T. Tsuji, M. Yasui, M. Pitt, “Development of Active Matrix Electronic Ink Displays for Handheld Devices, ” SID, pp. 176-179, 2003.
    [5] R.C. Liang, Jack Hou, Jerry Chung, Xiaojia Wang, Cheri Pereira and Yajuan Chen, “Microcup® Active and Passive Matrix Electrophoretic Display by Roll-to-Roll Manufacturing Processes, ” SID, pp. 838-841, 2003.
    [6] Cheng-Chung Lee, Yu-Yang Chang, Hua-Chi Cheng, Jia-Chong Ho and Janglin Chen, ” A Novel Approach to Make Flexible Active Matrix Displays,” Display Technology Center (DTC), Industrial Technology Research Institute (ITRI)
    [7] M. J. Williams, et al., “A comparative study of the light-induced defects in intrinsic amorphous and microcrystalline silicon deposited by remote plasma enhanced chemical vapor deposition”AIP Conf. Proc. Vol.234, pp.211-217 1991
    [8] R. Fluckiger, et al., ”Electrical properties and degradation kinetics of compensated hydrogenated microcrystalline silicon deposited by very high‐frequency‐glow discharge” J. Appl. Phys. Vol.77, pp.712 1995.
    [9] R. A. Street “Technology and Application of Hydrogenated Amorphous Silicon.” New York: Springer Verlag, 2000.
    [10] http://www.matweb.com/index.aspx (2012/2/9)
    [11] Cheng-Chung Lee, Yu-Yang Chang, Hua-Chi Cheng, Jia-Chong Ho and Janglin Chen, ” A Novel Approach to Make Flexible Active Matrix Displays,” Display Technology Center (DTC), Industrial Technology Research Institute (ITRI)
    [12] S. Wagner, H. Gleskova, I-C. Cheng, J. C. Strum, and Z. Suo, “Mechanics of TFT Technology on Flexible Substrates, ” from Flexible Flat Panel Displays, John Wiley & Sons, Ltd., 2005, Chichester, G. P. Crawford, Editor, Chapter 14.
    [13] M. H. Lee, K.-Y. Ho, P.-C. Chen, C.-C. Cheng, S. T. Chang, M. Tang, M. H. Liao, and T.-H. Yeh, “Promising a-Si:H TFTs with High Mechanical Reliability for Flexible Display,” IEDM Digest of Technical Digest, pp. 299-302, 2006.
    [14] M. H. Lee, K.-Y. Ho, P.-C. Chen, C.-C. Cheng, C. M. Lai, and Y.-H. Yeh, “The Mechanical Reliability of a-Si:H TFTs on Flexible Substrate,” Active-Matrix Flat panel Displays and Devices (AM-FPD), pp. 223-226, Japan, July 5-7, 2006.
    [15] G. Fortunato, and P. Migliorato, “Determination of gap state density in polycrystalline silicon by field-effect conductance, ” Appl. Phys. Lett., vol. 49, p. 1025, 1986.
    [16] H.-C. Lin1, K.-L. Yeh, M.-H. Lee, Y.-C. Su, T.-Y. Huang, S.-W. Shen, and H.-Y. Lin, “A Novel Methodology for Extracting Effective Density-of-States in Poly-Si Thin-Film Transistors,” Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International , vol., no., pp. 781- 784, 13-15 Dec. 2004
    [17] Natasa Tosic Golo, Siebrigje van der Wal, Fred G. Kuper, and Ton Mouthaan “Estimation of the impact of electrostatic discharge on density of states in hydrogenated amorphous silicon thin-film transistors,” Applied Physics Letters, 80 (18). pp. 3337-3339., 2002
    [18] Suzuki Tohru, Osaka Yukio, Hirose Masataka, “Theoretical Interpretations of the Gap State Density Determined from the Field Effect and Capacitance-Voltage Characteristics of Amorphous Semiconductors,” Japanese Journal of Applied Physics, Volume 21, Issue 3, pp. L159-L161 ,1982.
    [19] H. Gleskova, S. Wagner, and Z. Suo, “Failure Resistance of Amorphous Silicon Transistors under Extreme In-plane Strain,” Appl. Phys. Lett., vol. 75, no. 19, p. 3011, 1999.
    [20] H. Gleskova, and S. Wagner, “Electron mobility in amorphous silicon thin-film transistors under compressive strain, ” Appl. Phys. Lett., Vol. 79, no. 20, pp.3347-3349, 2001.
    [21] J.-H. Park, Munehiro Tada, C.-H., Duygu Kuzum, Pawan Kapur, H.-Y. Yu, H-.S. Philip Wong, and Krishna C. Saraswat , “Low Temperature (≤ 380ºC) and High Performance Ge CMOS Technology with Novel Source/Drain by Metal-Induced Dopants Activation and High-K/Metal Gate Stack for Monolithic 3D Integration,” Dept. of Electrical Engineering, CIS, Stanford University, Stanford, CA, 94305, USA.
    [22] Y. H. Son, J. W. Lee, Pilkyu Kang, M. G. Kang, J. B. Kim, and S. H. Lee,“Laser-induced Epitaxial Growth (LEG) Technology for High Density 3-D Stacked Memory with High Productivity,” Symposium on VLSI Technology Digest of Technical Papers, Dig. 80, 2007.
    [23] Y. Kim, C. Lim, C.D. Young, K. Matthews, J. Barnett, B. Foran, A. Agarwal, G. A. Brown, G. Bersuker, and P. Zeitzoff, “Conventional poly-Si gate MOS-transistors with a novel, ultra-thin Hf-oxide layer,” Symposium on VLSI Technology Digest of Technical Papers, Dig. 167, 2003.
    [24] C.-P. Lin, B.-Y. Tsui, M.-J. Yang, R.-H. Huang, and C. H. Chien, “High-performance poly-silicon TFTs using HfO2 gate dielectric,” IEEE Transactions on, Electron Devices, Vol.27, no. 5, p.360 ~ 363, 2006.
    [25] M.-J. Yang, C.-H. Chien, Associate Member, IEEE, Y.-H. Lu, G.-L. Luo, S.-C. Chiu, and C.-C. Lou,“High-Performance and Low Temperature Compatible p-Channel Polycrystalline-Silicon TFTs Using Hafnium-Silicate Gate Dielectric,” IEEE Transactions on Electron Devices, Vol.28, no. 10, 2007.
    [26] Dieter K. Schroder, “Semiconductor Material and Device Characterization,” pp.206-216

    無法下載圖示 本全文未授權公開
    QR CODE