簡易檢索 / 詳目顯示

研究生: 吳鎬宇
論文名稱: 使用圖形處理器加速糖尿病視網膜病變偵測
Accelerating detection of diabetic retinopathy using graphic processing unit
指導教授: 林政宏
學位類別: 碩士
Master
系所名稱: 科技應用與人力資源發展學系
Department of Technology Application and Human Resource Development
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 32
中文關鍵詞: 糖尿病視網膜病變支援向量機
論文種類: 學術論文
相關次數: 點閱:323下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據世界衛生組織統計,預估2030年糖尿病患者將會成長至366百萬人,其中因糖尿病而引發的糖尿病視網膜病變是成年人致盲主因之一,其病變特徵有微血管瘤、出血、滲出物等。本研究發展出一套糖尿病視網膜病變眼底影像量化評估系統,擷取視網膜病變特徵,並以支援向量機進行病變的分類與識別,可以辨識並計算病變的區域面積與成長趨勢等量化資訊,其正確率可達94%。

    According to the World Health Organization, the total number of diabetic patients will grow to 366 million in 2030. One of serious complications caused by diabetes is retinopathy which will lead to blindness. The symptoms of retinopathy include microaneurysms, hemorrhages, and exudates. This paper proposes a quantitative evaluation system for diabetic retinopathy fundus image. The system extracts retinal lesion features and uses support vector machine for lesion classification. The system achieves an average of 94% of accuracy for lesion identification.

    目  錄 中文摘要 i 英文摘要 ii 目  錄 iii 表  次 iv 圖  次 v 第一章 緒論 1   第一節 研究背景 1   第二節 研究動機與目的 2   第三節 研究貢獻 2 第二章 文獻探討 3   第一節 眼底影像預處理 3   第二節 病變區域分割與特徵擷取 4   第三節 病變區域分類與辨識 6 第三章 研究方法 9 第四章 研究結果 17 第五章 結論 27 參考文獻 29

    Athanasopoulos, A., Dimou, A., Mezaris, V., & Kompatsiaris, I. (2011). GPU acceleration for support vector machines. Paper presented at International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS), Delft, Netherlands.
    Badea, P., Danciu, D., & Davidescu, L. (2008). Preliminary results on using an extension of gradient method for detection of red lesions on eye fundus photographs. Paper presented at Automation, Quality and Testing, Robotics (AQTR), Cluj-Napoca, Romania.
    Chang, C. C., & Lin, C. J. (2011). LIBSVM : a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(2), 27-54.
    Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., & Goldbaum, M. (1989). Detection of blood vessels in retinal images using two-dimensional matched filters. Medical Imaging, 8(3), 263-269.
    Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273-597.
    Garcia, M., Sanchez, C. I., Lopez, M. I., Diez, A., & Hornero, R. (2008, August). Automatic detection of red lesions in retinal images using a multilayer perceptron neural network. Paper presented at Engineering in Medicine and Biology Society (EMBS), Vancouver, Canada.
    Ghadiri, F., Pourreza, H., Banaee, T., & Delgir, M. (2011, December). Retinal vessel tortuosity evaluation via Circular Hough Transform. Paper presented at Iranian Conference on BioMedical Engineering (ICBME), Tehran, Iran.
    Giancardo, L., Meriaudeau, F., Karnowski, T. P., Li, Y., Tobin, K. W., & Chaum, E. (2011, March). Automatic retina exudates segmentation without a manually labelled training set. Paper presented at International Symposium on Biomedical Imaging: From Nano to Macro (ISBI), Chicago, USA.
    Hafez, M., & Azeem, S. A. (2002, May). Using adaptive edge technique for detecting microaneurysms in fluorescein angiograms of the ocular fundus. Paper presented at Electrotechnical Conference (MELECON), Cairo, Egypt.
    Jaafar, H. F., Nandi, A. K., & Al-Nuaimy, W. (2010, August). Detection of exudates in retinal images using a pure splitting technique. Paper presented at Engineering in Medicine and Biology Society (EMBS), Buenos Aires, Argentina.
    Jaafar, H. F., Nandi, A. K., & Al-Nuaimy, W. (2011, August). Automated detection of red lesions from digital colour fundus photographs. Paper presented at Engineering in Medicine and Biology Society (EMBS), Boston, USA.
    Kande, G. B., Savithri, T. S., Subbaiah, P. V., & Tagore, M. R. M. (2009, June). Detection of red lesions in digital fundus images. Paper presented at Biomedical Imaging: From Nano to Macro (ISBI), Boston, USA.
    Kauppi, T., Kalesnykiene, V., Kamarainen, J. K., Lensu, L., Sorri, I., Uusitalo, H., Kälviäinen, H., & Pietil, J. (2006). DIARETDB0: evaluation database and methodology for diabetic retinopathy algorithms. Lappeenranta: Lappeenranta University of Technology.
    Niemeijer, M., Ginneken, B. V., Staal, J., Maria, S. A., & Michael, D. (2005, May). Automatic detection of red lesions in digiital color fundus photographs. Transactions on medical imaging, 14(5), 584-592.
    Otsu, N. (1979). A trreshold selection method from gray-level histogreams. IEEE transactions on systems, man, and cybernetics, 9(1), 62-66.
    Rocha, A., Carvalho, T., Jelinek, H. F., Goldenstein, S., & Wainer, J. (2012). Points of interest and visual dictionaries for automatic retinal lesion Detection. Biomedical Engineering, IEEE Transactions on, 59(8), 2244-2253.
    Selvathi, D., & Balagopal, N. (2012, March). Detection of retinal blood vessels using curvelet transform. Paper presented at International Conference on Devices, Circuits and Systems (ICDCS), Coimbatore, India.
    Tamilarasi, M., & Duraiswamy, K. (2013, January). Genetic based fuzzy seeded region growing segmentation for diabetic retinopathy images, Paper presented at International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India.
    Verma, K., Deep, P., & Ramakrishnan, A. G. (2011, December). Detection and classification of diabetic retinopathy using retinal images. Paper presented at India Conference (INDICON), Hyderabad, India.
    Wild, S., Roglic, G., Green, A., Sicree, R., & King, H. (2004). Global prevalence of diabetes estimates for year 2000 and projections for 2030. Diabetes Care, 27(5), 1047–1053.
    Wu, D., Zhang, M., Liu, J. C., & Bauman, W. (2006). On the adaptive detection of blood vessels in retinal images. Biomedical Engineering, 53(2), 341-343.
    Zhang, X. H., & Chutatape, A. (2004, October). Detection and classification of bright lesions in color fundus images, Paper presented at International Conference on Image Processing (ICIP), Singapore.

    下載圖示
    QR CODE