簡易檢索 / 詳目顯示

研究生: 鄭至富
Cheng, Chih-Fu
論文名稱: 發展 Porphyrin 衍生物當作新的孔洞傳輸材料並應用在鈣鈦礦太陽能電池
Evaluation of Expanded Porphyrin as hole transporting material (HTM) in Perovskite Solar Cells
指導教授: 洪政雄
Hung, Chen-Hsiung
李位仁
Lee, Way-Zen
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 68
中文關鍵詞: 鈣鈦礦太陽能電池Spiro- OMeTAD能量轉換效率Porphyrin固態太陽能電池
英文關鍵詞: perovskite solar cell, the solid-state solar cell, Spiro-OMeTAD,, energy conversion efficiency, Porphyrin
論文種類: 學術論文
相關次數: 點閱:364下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究乃致力於發展新的孔洞傳輸材料(HTMs)以應用於鈣鈦礦太陽能電池。在最初開始的階段,我們利用文獻已報導的N2,N2,N2’,N2’,N7,N7,N7’,N7’-octakis(4-methoxyphenyl)-9,9’-spirobi[fluorene]-2,2’,7,7’-tetraamine (Spiro-OMeTAD) 為孔洞傳輸材料(HTMs)製作鈣鈦礦太陽能電池元件,在效率上能夠穩定地得到 16% 的效率,其中最高效率已經達到 16.75 %。
    利用從上述的實驗為練習,證明了我們製作鈣鈦礦太陽能電池元件的技術已臻成熟。隨即我們將Spiro-OMeTAD此孔洞傳輸材料製換成實驗室所合成之oxasmaragdyrin (SM) 系列之化合物:SM9、SM11與SM13。由其此三個化合物的紫外-可見光吸收光譜和氧化還原電位,我們了解此些化合物的HOMO 能階適合當作鈣鈦礦太陽能電池的孔洞傳輸材料,用來把吸光層電洞導出。在 1.5AM 模擬光照下觀察其能量轉換效率,結果三個化合物均給予14%以上的高效率(SM9: 14.47%,SM11: 14.97% 以及SM13: 14.06%)。此外,我們亦測量了這些 SM的熱重分析,結果顯示此些化合物在150°C以下為穩定狀態,不會產生分解。 最後,在元件不進行封裝,只儲存於真空狀態的條件下,連續測量以SM為孔洞傳輸層的元件效率七天,顯示七天後元件仍維持原有效率的80%。

    This thesis focuses on the development of new hole-transporting materials (HTM) on the perovskite solar cell. In the beginning, we have utilized the literature reported N2,N2,N2’,N2’,N7,N7,N7’,N7’-octakis(4-methoxyphenyl)-9,9’-spirobi[fluorene]-2,2’,7,7’-tetraamine (Spiro-OMeTAD) as the hole-transporting material to fabricate solar cell films. We obtained stable efficiencies above 16%, and the highest one is 16.75%.
    Taking the experiments above as practices, the obtained stably high efficiencies have proven our good skills on making perovskite solar cell films. Therefore, we substituted the spiro-OMeTAD using oxasmaragdyrin (SM) molecules: SM9, SM11 and SM13, as the HTMs. From the absorption and reduction/oxidation potentials, the HOMO energy levels of the SM molecules have been known and are suitable for transporting electron holes from the light harvesting layer of perovskite solar cell. We have measured the energy transfer efficiencies of the solar cell films using SM as HTM under the simulation of 1.5 AM sunlight; all the three SM give a good efficiency higher than 14% (SM9: 14.47%,SM11: 14.97% 以及SM13: 14.06%). Besides, we have also measured the thermal gravity analysis of the SM molecules, the results show that the three SM are stable and did not decompose below 150°C. To test the stability of the films using SM as HTMs, we have stored the films under vacuum and continuously measured their efficiencies for 7 days, the results show that the films can still remain 80% of efficiency after 7 days.

    摘要 i Abstract ii 謝誌 iii 目錄 iv 縮寫 v 第一章 緒論 1 1.1 前言 1 1.2 鈣鈦礦太陽能電池簡介 3 1.2.1 鈣鈦礦太陽能電池歷史發展 3 1.2.2 研究動機與鈣鈦礦太陽能電池待解決問題 5 1.2.2.1 研究動機 5 1.2.2.2 鈣鈦礦太陽能電池待解決問題 5 1.2.3 太陽能電池基本概念 6 1.2.3.1 太陽光光譜 6 1.2.3.2 光伏特效應(photovoltaic effect) 7 1.2.3.3 太陽能電池的等效電路 8 1.2.3.4 太陽能電池的元件量測 10 1.2.3.5 光電轉換效率IPCE 11 1.3 鈣鈦礦太陽能電池(Perovskite solar cell) 12 1.3.1 鈣鈦礦結構 12 1.3.2 基本工作原理 13 1.3.3 元件架構 14 1.3.3.1 透明導電氧化物(Transparent Conductive Oxide, TCO) 14 1.3.3.2 多孔性奈米結構之TiO2半導體薄膜 (porous-nanocrystalline TiO2Semiconductor thin film) 14 1.3.3.3 鈣鈦礦材料(perovskite material) 16 1.4 鈣鈦礦沉積方法 18 1.4.1 一步沉積法-One step precursor deposition (OSPD) 18 1.4.2 連續沉積法-Sequential deposition process (SDP) 19 1.4.3 兩步旋轉塗佈沉積Two step spin-coating deposition (TSSD) 20 1.4.4 雙源真空沉積Dual source vacuum deposition (DSVD) 21 1.4.5 連續蒸鍍沉積Sequential vapour deposition (SVD) 21 1.4.6 快速沉積結晶法-Fast Deposition-Crystallization Method 23 1.4.7 滴鑄法-Drop Casting Method 24 1.5 孔洞傳輸材料-Hole transporting material(HTM) 24 1.5.1 螺旋型孔洞傳輸材料(Spiro type HTMs) 25 1.5.2 其他 HTM 的結構(Fig.2-23) 27 1.6 目前鈣鈦礦太陽能電池的商業限制 30 1.7 以Oxasmaragdyrin 做為HTM 31 第二章 實驗步驟與鑑定 34 2.1 化學藥品表 34 2.2 使用儀器 35 2.2.1 電流電壓太陽光模擬器 35 2.2.2 入射光子轉電子的轉換效率 (IPCE) 35 2.2.3 掃描電子顯微鏡(SEM) 35 2.3 CH3NH3I (MAI)的合成與鑑定 35 2.4 Spiro-OMeTAD 的合成與鑑定 36 2.4.1 2-iodobiphenyl合成 36 2.4.2 9-(2-biphenyl)-9-hydroxy-fluorine 合成與晶體討論 37 2.4.3 9H-fluorene 合成 39 2.4.4 2,2',7,7'-tetrabromo-9,9'-spirobi[fluorene] 合成與晶體討論 40 2.4.5 Spiro-OMeTAD 合成 41 2.5 SM的合成步驟 42 2.5.1 Dipyrromethane 的合成 43 2.5.2 Furan diol的合成步驟 43 2.5.3 16-oxatripyrromethane 的合成步驟 44 2.5.4 "3+2" Mcdonald condensation 的合成步驟 44 2.5.5 BF2 螯合物的合成步驟 44 2.6 鈣鈦礦太陽能電池元件的製備 48 2.6.1 導電玻璃蝕刻步驟 49 2.6.2 導電玻璃基材表面清潔 50 2.6.3 二氧化鈦緻密層 (TiO2 dense layer) 50 2.6.4 多孔性二氧化鈦層 (TiO2 mesoporous) 50 2.6.5 鈣鈦礦層(Perovskite layer) 50 2.6.6 孔洞傳輸材料層 (Hole transporting material ) 51 2.6.6.1 Spiro-OMeTAD 51 2.6.7 銀電極 (Ag counter electrode) 51 第三章 結果與討論 52 3.1 元件測量特性 52 3.1.1 HTM 為Spiro-OMeTAD 的光伏電池特性 52 3.2 SM 的光譜鑑定與分析 53 3.2.1 SM9, SM11, SM13 的UV-vis 光譜分析 53 3.2.2 SM 的cyclic voltammetry( CV ) 循環伏安法光譜分析 54 3.2.3 SM的能階圖 55 3.2.4 SM的熱重分析(TGA) 56 3.3 SM的光伏電池特性 57 3.4 以SM 為HTM層的Scanning Electron Microscopy 58 3.5 SM的效率與各參數分布 60 3.6 SM HTMs Porphyrin 衍生物的效率穩定性 62 第四章 結論 64 參考資料 65 附錄

    (1) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Journal of the American Chemical Society 2009, 131, 6050.
    (2) Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G. Nanoscale 2011, 3, 4088.
    (3) Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Gratzel, M.; Park, N.-G. Sci. Rep. 2012, 2.
    (4) Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science 2012, 338, 643.
    (5) Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Gratzel, M. Nature 2013, 499, 316.
    (6) Liu, M.; Johnston, M. B.; Snaith, H. J. Nature 2013, 501, 395.
    (7) Liu, D.; Kelly, T. L. Nat Photon 2014, 8, 133.
    (8) Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Science 2014, 345, 542.
    (9) Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D. Progress in Photovoltaics: Research and Applications 2014, 22, 701.
    (10) Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Science 2013, 342, 341.
    (11) Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M. G. Nat Photon 2014, 8, 489.
    (12) Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A.-A.; Sadhanala, A.; Eperon, G. E.; Pathak, S. K.; Johnston, M. B.; Petrozza, A.; Herz, L. M.; Snaith, H. J. Energy & Environmental Science 2014, 7, 3061.
    (13) Yin, W.-J.; Shi, T.; Yan, Y. Advanced Materials 2014, 26, 4653.
    (14) Marchioro, A.; Teuscher, J.; Friedrich, D.; Kunst, M.; van de Krol, R.; Moehl, T.; Gratzel, M.; Moser, J.-E. Nat Photon 2014, 8, 250.
    (15) Park, N. G.; van de Lagemaat, J.; Frank, A. J. The Journal of Physical Chemistry B 2000, 104, 8989.
    (16) Zhou, J. G.; Addison, A.; He, Z.; Wang, F. Materials & Design 2005, 26, 670.
    (17) Moore, D. T.; Sai, H.; Wee Tan, K.; Estroff, L. A.; Wiesner, U. APL Materials 2014, 2, 081802.
    (18) Liang, K.; Mitzi, D. B.; Prikas, M. T. Chemistry of Materials 1998, 10, 403.
    (19) Ma, Y.; Zheng, L.; Chung, Y.-H.; Chu, S.; Xiao, L.; Chen, Z.; Wang, S.; Qu, B.; Gong, Q.; Wu, Z.; Hou, X. Chemical Communications 2014, 50, 12458.
    (20) Wu, Y.; Islam, A.; Yang, X.; Qin, C.; Liu, J.; Zhang, K.; Peng, W.; Han, L. Energy & Environmental Science 2014, 7, 2934.
    (21) Docampo, P.; Hanusch, F. C.; Giesbrecht, N.; Angloher, P.; Ivanova, A.; Bein, T. APL Materials 2014, 2, 081508.
    (22) Zheng, L.; Ma, Y.; Chu, S.; Wang, S.; Qu, B.; Xiao, L.; Chen, Z.; Gong, Q.; Wu, Z.; Hou, X. Nanoscale 2014, 6, 8171.
    (23) Cao, D. H.; Stoumpos, C. C.; Malliakas, C. D.; Katz, M. J.; Farha, O. K.; Hupp, J. T.; Kanatzidis, M. G. APL Materials 2014, 2, 091101.
    (24) Cohen, B.-E.; Gamliel, S.; Etgar, L. APL Materials 2014, 2, 081502.
    (25) Xiao, Z.; Bi, C.; Shao, Y.; Dong, Q.; Wang, Q.; Yuan, Y.; Wang, C.; Gao, Y.; Huang, J. Energy & Environmental Science 2014, 7, 2619.
    (26) Chiang, C.-H.; Tseng, Z.-L.; Wu, C.-G. Journal of Materials Chemistry A 2014, 2, 15897.
    (27) Im, J.-H.; Jang, I.-H.; Pellet, N.; Grätzel, M.; Park, N.-G. Nat Nano 2014, 9, 927.
    (28) Im, J.-H.; Kim, H.-S.; Park, N.-G. APL Materials 2014, 2, 081510.
    (29) Malinkiewicz, O.; Roldán-Carmona, C.; Soriano, A.; Bandiello, E.; Camacho, L.; Nazeeruddin, M. K.; Bolink, H. J. Advanced Energy Materials 2014, 4, n/a.
    (30) Hu, H.; Wang, D.; Zhou, Y.; Zhang, J.; Lv, S.; Pang, S.; Chen, X.; Liu, Z.; Padture, N. P.; Cui, G. RSC Advances 2014, 4, 28964.
    (31) Chen, C.-W.; Kang, H.-W.; Hsiao, S.-Y.; Yang, P.-F.; Chiang, K.-M.; Lin, H.-W. Advanced Materials 2014, 26, 6647.
    (32) Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H.-S.; Wang, H.-H.; Liu, Y.; Li, G.; Yang, Y. Journal of the American Chemical Society 2014, 136, 622.
    (33) Chen, Q.; Zhou, H.; Song, T.-B.; Luo, S.; Hong, Z.; Duan, H.-S.; Dou, L.; Liu, Y.; Yang, Y. Nano Letters 2014, 14, 4158.
    (34) Supasai, T.; Rujisamphan, N.; Ullrich, K.; Chemseddine, A.; Dittrich, T. Applied Physics Letters 2013, 103, 183906.
    (35) Wang, L.; McCleese, C.; Kovalsky, A.; Zhao, Y.; Burda, C. Journal of the American Chemical Society 2014, 136, 12205.
    (36) Kim, H.-B.; Choi, H.; Jeong, J.; Kim, S.; Walker, B.; Song, S.; Kim, J. Y. Nanoscale 2014, 6, 6679.
    (37) Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Nat Mater 2014, 13, 897.
    (38) Xiao, M.; Huang, F.; Huang, W.; Dkhissi, Y.; Zhu, Y.; Etheridge, J.; Gray-Weale, A.; Bach, U.; Cheng, Y.-B.; Spiccia, L. Angewandte Chemie 2014, 126, 10056.
    (39) Nie, W.; Tsai, H.; Asadpour, R.; Blancon, J.-C.; Neukirch, A. J.; Gupta, G.; Crochet, J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A.; Wang, H.-L.; Mohite, A. D. Science 2015, 347, 522.
    (40) Mei, A.; Li, X.; Liu, L.; Ku, Z.; Liu, T.; Rong, Y.; Xu, M.; Hu, M.; Chen, J.; Yang, Y.; Grätzel, M.; Han, H. Science 2014, 345, 295.
    (41) Jeon, N. J.; Lee, H. G.; Kim, Y. C.; Seo, J.; Noh, J. H.; Lee, J.; Seok, S. I. Journal of the American Chemical Society 2014, 136, 7837.
    (42) Lv, S.; Han, L.; Xiao, J.; Zhu, L.; Shi, J.; Wei, H.; Xu, Y.; Dong, J.; Xu, X.; Li, D.; Wang, S.; Luo, Y.; Meng, Q.; Li, X. Chemical Communications 2014, 50, 6931.
    (43) Jeon, N. J.; Lee, J.; Noh, J. H.; Nazeeruddin, M. K.; Grätzel, M.; Seok, S. I. Journal of the American Chemical Society 2013, 135, 19087.
    (44) Fong, H. H.; So, S. K.; Sham, W. Y.; Lo, C. F.; Wu, Y. S.; Chen, C. H. Chemical Physics 2004, 298, 119.
    (45) Bi, D.; Yang, L.; Boschloo, G.; Hagfeldt, A.; Johansson, E. M. J. The Journal of Physical Chemistry Letters 2013, 4, 1532.
    (46) Sung, S. D.; Kang, M. S.; Choi, I. T.; Kim, H. M.; Kim, H.; Hong, M.; Kim, H. K.; Lee, W. I. Chemical Communications 2014, 50, 14161.
    (47) Xu, B.; Sheibani, E.; Liu, P.; Zhang, J.; Tian, H.; Vlachopoulos, N.; Boschloo, G.; Kloo, L.; Hagfeldt, A.; Sun, L. Advanced Materials 2014, 26, 6629.
    (48) Choi, H.; Paek, S.; Lim, N.; Lee, Y. H.; Nazeeruddin, M. K.; Ko, J. Chemistry – A European Journal 2014, 20, 10894.
    (49) Qin, P.; Paek, S.; Dar, M. I.; Pellet, N.; Ko, J.; Grätzel, M.; Nazeeruddin, M. K. Journal of the American Chemical Society 2014, 136, 8516.
    (50) Krishna, A.; Sabba, D.; Li, H.; Yin, J.; Boix, P. P.; Soci, C.; Mhaisalkar, S. G.; Grimsdale, A. C. Chemical Science 2014, 5, 2702.
    (51) Li, H.; Fu, K.; Hagfeldt, A.; Grätzel, M.; Mhaisalkar, S. G.; Grimsdale, A. C. Angewandte Chemie International Edition 2014, 53, 4085.
    (52) Li, H.; Fu, K.; Boix, P. P.; Wong, L. H.; Hagfeldt, A.; Grätzel, M.; Mhaisalkar, S. G.; Grimsdale, A. C. ChemSusChem 2014, 7, 3420.
    (53) Qin, P.; Kast, H.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Mishra, A.; Bauerle, P.; Gratzel, M. Energy & Environmental Science 2014, 7, 2981.
    (54) Zheng, L.; Chung, Y.-H.; Ma, Y.; Zhang, L.; Xiao, L.; Chen, Z.; Wang, S.; Qu, B.; Gong, Q. Chemical Communications 2014, 50, 11196.
    (55) Do, K.; Choi, H.; Lim, K.; Jo, H.; Cho, J. W.; Nazeeruddin, M. K.; Ko, J. Chemical Communications 2014, 50, 10971.
    (56) Song, Y.; Lv, S.; Liu, X.; Li, X.; Wang, S.; Wei, H.; Li, D.; Xiao, Y.; Meng, Q. Chemical Communications 2014, 50, 15239.
    (57) Qin, P.; Tetreault, N.; Dar, M. I.; Gao, P.; McCall, K. L.; Rutter, S. R.; Ogier, S. D.; Forrest, N. D.; Bissett, J. S.; Simms, M. J.; Page, A. J.; Fisher, R.; Grätzel, M.; Nazeeruddin, M. K. Advanced Energy Materials 2015, 5, n/a.
    (58) Cai, B.; Xing, Y.; Yang, Z.; Zhang, W.-H.; Qiu, J. Energy & Environmental Science 2013, 6, 1480.
    (59) Kwon, Y. S.; Lim, J.; Yun, H.-J.; Kim, Y.-H.; Park, T. Energy & Environmental Science 2014, 7, 1454.
    (60) Lee, J.-W.; Park, S.; Ko, M. J.; Son, H. J.; Park, N.-G. ChemPhysChem 2014, 15, 2595.
    (61) Nagarjuna, P.; Narayanaswamy, K.; Swetha, T.; Rao, G. H.; Singh, S. P.; Sharma, G. D. Electrochimica Acta 2015, 151, 21.
    (62) Yan, W.; Li, Y.; Sun, W.; Peng, H.; Ye, S.; Liu, Z.; Bian, Z.; Huang, C. RSC Advances 2014, 4, 33039.
    (63) Yan, W.; Li, Y.; Li, Y.; Ye, S.; Liu, Z.; Wang, S.; Bian, Z.; Huang, C. Nano Res. 2015, 1.
    (64) Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C.-S.; Chang, J. A.; Lee, Y. H.; Kim, H.-j.; Sarkar, A.; NazeeruddinMd, K.; Gratzel, M.; Seok, S. I. Nat Photon 2013, 7, 486.

    下載圖示
    QR CODE