研究生: |
李方盛 Lee,Fang-Sheng |
---|---|
論文名稱: |
添加奈米氧化鋁於四行程機車機油中引擎性能影響之研究 The study on the influence of engine performance regarding to four-stroke motorcycle engine oil by using nano alumina |
指導教授: |
呂有豐
Lue, Yeou-Feng 洪翊軒 Hung, Yi-Hsuan |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 72 |
中文關鍵詞: | 奈米氧化鋁 、布朗運動 、磨潤試驗 、燃料消耗率(km/L) |
英文關鍵詞: | Nano alumina, Brownian motion, Grinding-run test, Fuel consumption(km/L) |
論文種類: | 學術論文 |
相關次數: | 點閱:133 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗研究針對四行程機車,添加奈米氧化鋁於原廠指定使用的機油中,研究機車在運行時的燃料消耗率(km/L)及排放廢氣污染排放的情況做為實驗成果的效益評估。本研究先將添加奈米氧化鋁的機油,經由基礎性質量測及磨潤試驗評估後,總共試驗了0、0.5、1.5、2.5 wt.%的奈米氧化鋁機油,最後選定綜效表現較佳的1.5 wt.%奈米氧化鋁機油,在磨潤試驗中,添加1.5 wt.% 的奈米氧化鋁顆粒機油相較無添加奈米氧化鋁的機油,綜效平均降低8.37 % 的磨耗量,而在ECE-40行車型態、爬坡度、定速測試等燃料消耗率(km/L)測試,實驗結果顯示,添加奈米氧化鋁粉的機油,在ECE-40行車型態的燃料消耗率測試,平均增加了2.69 %的燃油效耗率,定油門開度測試綜效平均增加3.87 %燃料消耗率,爬坡度測試綜效平均增加2.59 % 的燃油效耗率。實驗利用奈米顆粒在機油運作中受到布朗運動影響,使得奈米顆粒彼此碰撞的機會增加,提升熱傳導效應,藉此提高引擎運轉效率進而降低燃料消耗率。在未來將可以測試更多不同種類的奈米顆粒或是將奈米顆粒直接添加於運行的燃料中,測試其對於機車燃料消耗率的影響效益。
關鍵字:奈米氧化鋁、布朗運動、磨潤試驗、燃料消耗率(km/L)
This study for four-stroke motorcycles, nano-alumina powder added to the original name of the used oil in the fuel consumption rate at runtime Locomotive emissions and pollutant emissions as a benefit assessment of the outcome of the experiment. In this study, the first to add oil nano-alumina powder after foundation of quality by measuring and grinding Run test assessment, a total of tested 0,0.5,1.5,2.5 wt.% Of the nano-alumina oil, the final selection of synergy performance Preferably, 1.5% wt.% alumina nano oil, in mill-run test, adding 1.5 wt.% of the nano-alumina particles of oil compared to no added nano-alumina particles of oil, an average of 8.37% synergy The amount of wear, and in the ECE-40 driving patterns, climbing, fixed speed testing fuel consumption test results show, add oil nano-alumina, in ECE-40 driving patterns of fuel consumption test. The average increase of 2.69 %of the fuel consumption efficiency rate, given the synergies throttle opening test increased by an average 3.87 %, climbing to test the synergy of an average increase of 2.59 % fuel consumption efficiency rate. The opportunity to test the use of nano-particles are subjected to Brownian motion effect in oil operations, so that nano-particles collide with each other to increase, enhance the effect of heat conduction, thereby improving the operation efficiency of the engine and thus reduce fuel consumption. In the future will be able to test a greater variety of nano-particles or nano-particles will be added directly to the fuel running, tested for locomotive fuel consumption.
Keywords: Nano alumina, Brownian motion, Grinding-run test, Fuel consumption(km/L).
參考文獻
[1] 104車輛油耗指南,經濟部,2014.
[2] National Biodieael Board “hat is Biodiesol”, http://www.biodiesel.org/fuel factsheet.html,2000.
[3] Mu-Jung Kao,Chen-ching Ting, Bai-Fu Lin and Tsing-Tshih Tsung, “Aqueous Aluminum Nanofluid Combustion in Diesel Fuel”, Journal of Testing and Evalustion, Vol.36, pp108-115,2006.
[4] D. Gong, C. A. Grimes, O. K. Varghese, W. C. Hu, R. S. Singh, Z. Chen, E. C. Dickey, “Titanium oxide nanotube arrays prepared by anodic oxidation”, J. Mater. Res, Vol.210,pp.161-168,2001.
[5] Q. Cai, M. Paulose, O. K. Varghese, C. A. Grimes, “The Effect of Electrolyte Composition on the Fabrication of Self-Organized Titanium Oxide Nanotube Arrays by Anodic Oxidation”, J. Mater. Res,Vol 20,pp.230-236,2000.
[6] C. J. Lin, W. Y. Yu, S. H. Chien, .“Effect of Anodic Powder as Additive on Electron Transport Properties in Nanocrystalline”, Appl Phys Lett,Vol.91,pp.233-240, 2007.
[7] S. Lee, S. Choi, Li, and J.A. Eastman, “Measuring thermal conductivity of fluids containing oxide nanoparticles”, ASME Journal of Heat Transfer,Vol.121,pp.280-289,2002.
[8] D. Wen, G. Lin, S. Vafaei , K. Zhang, “Review of nanofluidsfor heat transfer applications”, particuology,Vol.7,pp.141-150,2001.
[9] Y. Xuan , Q. Li and W.Hu, “Aggregation Structure and Thermal Conductivity of Nanofluids” AICHE Journal, Vol.49,pp.1038-104,2009.
[10] P. Keblinsik, S.R. Phillpot, S.Choi, and J.A. Eastman , “Mechanisms of heat flow in suspensions of nano-sized particles(Nanofluid)”, International Journal of Heat and Mass Transfer, Vol.45,pp.855-863,2002.
[11] C. H. Li and G. P. Peterson,“The effect of particle size on the effective thermal conductivity of Al2O3-water nano -fluids”, Journal of applied physics, Vol. 101, pp.44312-44312,2007.
[12] V. Zwilling; M. Aucouturier; E. Darque-Ceretti, “Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach ”, Electrochim. Acta,Vol. 45,pp.921-929,2009.
[13] P. Zhou, C. W. Wu, G, K. Ma, “Contact resistance prediction and structure optimization of nanoparticles plates,” Journal of Power Sources, Vol.162, pp.1105-1115,2008.
[14] J. L. Ma, K. Lee, “Nano particles fluid as ultimate coolant,” Journal of Power Sources, Vol.354, pp.242-248,2009.
[15] C.U, Y. F, “Experimental and thermal studies of nanofluid thermal conductivity a review nanoscale research letters,” Journal of Power Appily, Vol.6, pp.229, 2011.
[16] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, “Enhanced Photocleavage of Water ”. Nano Letters ,Vol.361,pp.191-195,2009.
[17] Tsubomura, H. Matsumura, M. Nomura,T.Amamiya, Y, “Nanoparticles Al2O3 queous electrolyte: platinum photocell”, Nature ,Vol.261,pp.402-403, 2009.
[18] ASTM G99-95a, Standard test method for wear testing with a pin-on-disk apparatus, 2000.
[19] hi as-Castillo and H. A. Spikes, “Mechanism of Action of oildal Solid Dispersions,” Journal of Tribology, Vol.185, pp.502-517,2010.
[20] H. Chang, Z. Y. Li, M. J. Kao, K. D. Huang, and H. M Wu, “Tribological property of Al2O3 nanolubricant on piston and cylinder surfaces,” Journal of Alloys and Compounds, Vol. 495,pp.481-484,2009.
[21] G. Liu, X. Li, B. Qin, D. Xing, Y. Guo, and R. Fan, “Investigation of the Mending Effect and Mechanism of Copper Nano-Particles on a Tribologically Stressed Surface,” Tribology Letters, Vol.17, pp.961-966,2009.
[22] J. Zhou, J. Yang, Z. Zhang, W. Liu, and Q. Xue,“Study on the structure and tribological properties of surface-modified Cu nanoparticles,”Mater. Res. Bull,Vol.34, pp1361-1367,2009.
[23] Z.S. Hu, R. Lai, F. Lou, L.G. Wang, Z.L. Chen, G.X. Chen, and J.X. Dong, “Preparation and tribological properties of nanometer magnesium borate as lubricating oil additive,” Wear, Vol.252, pp.370–374,2006.
[24] G. Ding, H. Peng, W. Jiang, and Y. Gao, “The migration characteristics of nanoparticles in the pool boiling process of nanorefrigerant and nanorefrigerant–oil mixture,” International Journal of Refrigeration, Vol.32, pp. 114–123,2008.
[25] U. Peng, G. Ding, R. Jiang, H. Hu, and Y. Gao, “Heat transfer characteristics of nanofluid flow boiling inside a horizontal smooth tube,” International Journal of Refrigeration, Vol.32, pp.1259–1270,
[26] L. Rapoport, V. Leshchinsky, M. Lvovsky, O. Nepomnyashchy, Y. Volovik, and R. Tenne, “Mechanism of friction of fullerenes,” Industrial Lubrication and Tribology, Vol.54, pp.171-176,2010.
[27] L. Rapoport, V. Leshchinsky, I. Lapsker, Y. Volovik, O. Nepomnyashchy, M. Lvovsky, R. Popovitz-Biro, Y. Feldman, and R. Tenne,“Tribological properties of WS2 nanoparticles under mixed lubrication,” Wear, Vol.255, pp.785-793,2009.
[28] 3. K. Lee, Y. Hwang, S. Cheong, L. Kwon, S. Kim, and J. Lee, “Performance evaluation of nano-lubricants of fullerene nanoparticles in refrigeration mineral oil,” Current Applied Physics, Vol.9, pp.128–131,2010.
[29] S. Gi, K. Guo, Z. Liu, and Y. Wu, “Performance of a domestic Nanoparticles as working fluid,” Energy Conversion and Management, Vol.52, pp. 733–737,2010.