簡易檢索 / 詳目顯示

研究生: 黃絹容
Huang, Chuan-Jung
論文名稱: Ka頻帶升頻混頻器與I/Q調變器設計與實現
Design of Ka-band Up-Mixer and I/Q Modulator
指導教授: 蔡政翰
Tsai, Jen-Han
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 125
中文關鍵詞: Ka頻段正交調變器混頻器CMOS耦合器
英文關鍵詞: Ka-band, mixer, I/Q modulator, CMOS, coupler
DOI URL: https://doi.org/10.6345/NTNU202204563
論文種類: 學術論文
相關次數: 點閱:189下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於射頻收發器系統來說,混頻器與調變器扮演著相當重要的角色,為了達到混頻與高隔離度,現今,混頻器與調變器的設計以砷化鎵製程(GaAs process)為主。隨著CMOS的進步,近年來射頻電路大部份已經成功整合至CMOS 製程當中,且CMOS具有低功率消耗、低成本、高整合度的優勢,因此本論文將設計及實現Ka頻帶升頻混頻器、次諧波混頻器、I/Q調變器。

    本論文將介紹第一個電路為Ka頻帶升頻混頻器,藉由電晶體偏壓操作在弱反轉區而達到低功率消耗與低LO驅動功率且有不錯的轉換增益。在IF端加入緩衝放大器(Buffer Amplifier)以提高功率增益。在LO驅動功率為0 dBm時,量測結果之頻帶為15-34 GHz、轉換增益為 1.5±2.5 dB、整體功率消耗約為2.5 mW,LO-IF與LO-RF的隔離度大於45 dB,晶片佈局面積為0.31 mm^2。

    然而Ka頻帶升頻混頻器在LO頻率下的功率與低邊頻帶、高邊頻帶的訊號較相近,為了改善這個問題,因此將升頻混頻器延伸至次諧波混頻器降低LO端頻率,也可以降低鎖相迴路與壓控震盪器的設計難度。而第二個介紹的電路次諧波混頻器其2LO-IF與2LO-RF的隔離度大於58 dBm、LO-IF與LO-RF的隔離度大於51 dB,晶片面積為0.6156 mm^2。

    為了提高系統的靈敏度,而設計第三個電路為應用於Ka頻帶的正交調變器。藉由輸入訊號分成I路徑、Q路徑兩個路徑,消除輸出高邊頻帶或低邊訊號其中一邊訊號來提高系統的靈敏度與整個系統的線性度。此電路最大特色為擁有較寬頻的鏡像拒斥比,其晶片面積為0.825 mm^2。

    Mixer and Modulator play an important role in the radio frequency transceiver. In general, the radio frequency mixers and modulators are implemented in GaAs technology. Recently, the RF circuits have been successfully integrated into the Complementary Metal-Oxide Semiconductor (CMOS) process and CMOS is attractive for low cost, low power consumption and systems-on-a-chip (SoC) applications. Accordingly, this thesis designs and implements Ka-band Up-Mixer, Sub-Mixer, I/Q Modulator.

    First, a Ka-band up-conversion ring mixer by employing a weak inversion biasing technique, the ring mixer can operate at low dc consumption power and low LO drive power while maintaining reasonable conversion gain. In addition, add buffer amplifier at IF terminal to provide good conversion gain for the mixer. At low LO drive power mode of 0 dBm, the mixer has conversion gain of 1.5 ± 2.5 dB from 15 to 34 GHz. The dc power consumption is only 2.749 mW from 1.2 V supply voltage. The characters of LO-to-IF and LO-to-RF isolation are lager than 45 dB. The chip area is 0.31 mm^2.

    To decrease half of LO frequency that can improve the character of poor signal and noise ratio of a Ka-band Up-Mixer, it also can decrease phase-locked loop and voltage-controlled oscillator difficulty design. The character of 2LO-to-IF and 2LO-to-RF isolation lager than 58 dB, LO-to-IF and LO-to-RF isolation lager than 51 dB .The chip area is 0.6156 mm^2.

    For level up sensitivity of system to design third circuit of Ka-band I/Q Modulator. By branch input signal for I-path and Q-path that can remove one of two-tone mixer signal to increase all system sensitivity and linearity.The characteristic of this circuit that have high image-rejection. The chip area is 0.825 mm^2.

    目錄 摘 要 I ABSTRACT III 誌謝 V 目錄 VII 圖目錄 XI 表目錄 XVII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 1 1.2 研究成果 3 1.3 論文架構 4 第二章 混頻器基本介紹 5 2.1 混頻器原理與簡介 5 2.2 混頻器與調變器設計參數 6 2.2.1 轉換增益/損耗(Conversion Gain/Loss) 6 2.2.1 轉換增益對LO功率(Conversion Gain versus LO Power) 6 2.2.2 頻率範圍 7 2.2.2 隔離度(Isolation) 8 2.2.3 線性度 9 2.2.5 功率消耗 12 第三章 Ka頻帶混頻器 13 3.1 簡介 13 3.2 混頻器架構分類與比較 13 3.2.1 二極體與電晶體混頻原理 15 3.2.1.1 二極體混頻原理 15 3.2.1.2 電晶體混頻原理 16 3.2.2 被動式混頻器衍生類別 18 3.2.3 主動式混頻器衍生類別 21 3.3 Ka頻帶混頻器設計 23 3.3.1 核心混頻電晶體偏壓與尺寸的選擇 23 3.3.2 緩衝放大器與電晶體電壓尺寸選擇 32 3.3.3 RF與LO端Marchand Balun 37 3.3.4 EM完整電路圖 42 3.4 Ka頻帶升頻混頻器模擬結果 44 3.5 量測與模擬比較結果 48 3.5 結果與討論 58 第四章 Ka頻帶次諧波混頻器 61 4.1 簡介 61 4.2 次諧波混頻原理 62 4.3 Ka頻帶次諧波混頻器設計 64 4.3.1 電晶體尺寸與偏壓選擇 64 4.3.2 緩衝放大器與電晶體電壓尺寸選擇 71 4.3.3 RF與LO端Marchand Balun 75 4.3.4 耦合器(Coupler) 79 4.3.5 EM完整電路圖 82 4.4 Ka頻帶升頻混頻器模擬結果 84 4.5 量測與模擬比較結果 88 4.4 結果與討論 97 第五章 正交調變器 99 5.1 訊號調變技術簡介 99 5.1.1 收發系統 99 5.1.2 直接升頻式發射機(Direct-Conversion Transmitter) 100 5.1.3 外差式發射機(Heterodyne Transmitter) 101 5.2 I/Q調變器設計 102 5.2.1 耦合器(Coupler) 103 5.2.2 威爾金森功率合成器(Wilkinson power combiner) 105 5.2.3 匹配網路設計 109 5.2.4 鏡像拒斥比(Image Rejection) 110 5.3 模擬結果 111 5.4 結果與討論 115 第六章 結論 117 第七章 未來展望 119 參 考 文 獻 121 自傳 125 學術成就 125

    [1] F. Zhang, E. Skafidas, and W. Shieh, “60GHz doublebalanced up-conversion mixer on 130 nm CMOS technology,” Electron. Lette. vol. 44, no. 10, pp. 633–634, May 2008.

    [2] P.-C. Huang, R.-C. Liu, J.-H. Tsai, H.-Y. Chang, H. Wang, J. Yeh, C.-Y. Lee, and J. Chern, “A compact 35–65 GHz up conversion mixer with integrated broadband transformers in 0.18-μm SiGe BiCMOS technology,” in IEEE RFIC Symp. Dig., Jun. 2006.

    [3] J.-H. Tsai and T.-W. Huang, “35–65-GHz CMOS broadband modulator and demodulator with sub-harmonic pumping for MMW wireless gigabit applications,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 10, pp. 2075–2085, Oct. 2007.

    [4] J.-H. Chen, C.-C. Kuo, Y.-M. Hsin, and H. Wang, “A 15–50 GHz broadband resistive FET ring mixer using 0.18-μm CMOS technology,” in IEEE MTT-S Int. Microw. Symp. Dig., 2010, pp. 784–787

    [5] J.-H. Tsai, “Design of 1.2 V broadband, high data-rate MMW CMOS I/Q modulator and demodulator using modified Gilbert-cell mixer,” IEEE Trans. Microw. Theory Tech., vol. 59, no.5, pp. 1350–1360, May 2011.

    [6] Y.-S. Won, C.-H. Kim, and S.-G. Lee, “A 24 GHz Highly Linear up-conversion mixer in CMOS 0.13 μm technology,” IEEE Microwave and Wireless Components Letters, vol. 25, Issue 6, June 2015.

    [7] A. Verma, K. K. O, and J. Lin, “A low-power up-conversion CMOS mixer for 22–29-GHz ultra-wideband applications,” IEEE Trans. Microw.Theory Tech., vol. 54, no. 8, pp. 3295–3300, Aug. 2006.

    [8] C. Huynh, J. Lee and C. Nguyen, “A K-Band SiGe BiCMOS Fully Integrated Up-Conversion Mixer,” in Microwave Conference Proceeding (APMC), 2013 Asia-Pastific, Seoul, 5-8 Nov. 2013, pp. 185-187.

    [9] I. Lai and M. Fujishima, “An integrated 20-26 GHz CMOS up-conversionmixer with low power consumption,” in Proc. 32nd Eur. Solid-State Circuits Conf., 2006, pp. 400–403.

    [10] A.Verma, L. Gao, K. K. O, and J. Lin, “A K-band up-conversion mixer in 0.13-μm CMOS technology,” in Proc. Asia–Pacific Microw. Conf., Dec. 2004.

    [11] P. Upadhyaya, M. Rajashekharaiah, and Deukhyoun Heo, Y. –J. E. Chen “A High IIP2 Doubly Balanced Sub-Harmonic Mixer in 0.25um CMOS for 5GHz ISM Band Direct Conversion Receiver,” 2005 IEEE Radio Frequency integrated Circuits (RFIC) Symposium - Digest of Papers., pp. 175–178, June 2005.

    [12] T.-H. Wu, S.-C. Tseng, C.-C. Meng, G.-W. Huang “GaInP/GaAs HBT Sub-Harmonic Gilbert Mixers Using Stacked-LO and Leveled-LO Topologies,” in IEEE Transactions on Microwave Theory and Techniques. vol. 55, Issue. 5, May. 2007.

    [13] T.-H. Wu, S.-C. Tseng, C.-C. Meng, G.-W. Huang “A High 2LO-to-RF Isolation GaInP GaAs HBT Sub-Harmonic Gilbert,” in 2006 IEEE MTT-S International Microwave Symposium Digest., pp. 1505–1508 , June. 2006.

    [14] K.-J. Koh, M.-Y. Park, C.-S. Kim, H.-K. Yu “Subharmonically Pumped CMOS Frequency Conversion (Up and Down) Circuits for 2-GHz WCDMA Direct-Conversion Transceiver,” in IEEE Journal of Solid-State Circuits., vol. 39, Issue. 6, pp. 871–884, June. 2004.

    [15] K. Nimmagadda, G.-M. Rebeiz, “A 1.9GHz Double-Balanced Subharmonic Mixer for Direct Conversion Receivers,” in Radio Frequency Integrated Circuits (RFIC) Symposium, 2001. Digest of Papers. 2001 IEEE, pp. 253–256 , May. 2001.

    [16] M.-J. Zeng, R.-M. Weng, “A 0.8V 4.3mW Sub-harmonic Mixer for Ultra-wideband Systems,” in 2012 IEEE International Symposium on Circuits and Systems, pp. 1927–1930 , May. 2012.

    [17] F. C. Chang, P. C. Huang, S. F. Chao, and H. Wang, “A Low Power Folded Mixer for UWB System Application Using 0.18μm CMOS Technology,” in IEEE Microw. and Wireless Compon. Lett., vol. 17, no. 5, pp. 367–369, May. 2007

    [18] H. W. Chung, J. F. Yeh, P. H. Lien, H. C. Kuo, and H.-R.Chuang, “Design of a 6-10GHz Low LO-Power CMOS Folded-Mirror Mixer with Link-Budget Consideration For DS-UWB Receivers,” in Proc. European Radar Conf., Oct.2008, pp. 376–379.

    [19] S. K. Hampel, O. Schmitz, M. Tiebout, and I. Rolfes,“Inductorless Low Voltage and Low Power Wideband Mixer for Multistandard Receivers,” IEEE Trans. Microwave Theory Tech., vol. 58, no. 5, pp. 1384–1390, May. 2010.

    [20] I. C. Chen and J. R. Yang, “2-13GHz Broadband CMOS Low Voltage Mixer With Active Balun Designed for UWB Systems,” in Proc. IEEE Int. Electron Device and Solid-State Circuits Conf., pp. 1–4, Dec. 2010.

    [21] S. Hackl, J. Bock, M. Wurzer, and A. L. Scholtz, “40 GHz monolithic integrated mixer in SiGe bipolar technology,” in IEEE MTT-S Int. Dig.,Seattle, WA, 2002, vol. 2, pp. 1241–1244.

    [22] M.-D. Tsai and H. Wang, “A 0.3-25-GHz ultra-wideband mixer using commercial 0.18-_m CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 11, pp. 522–524, Nov. 2004.

    [23] C.-S. Lin, P.-S.Wu, H.-Y. Chang, and H.Wang, “A 9-50-GHz Gilbert cell down-conversion mixer in 0.13-µm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 293–295, May. 2006.

    [24] H.-Y. Chang, P.-S. Wu, T.-W. Huang, H. Wang “Design and analysis of CMOS broad-band compact high-linearity modulators for gigabit microwave/millimeter-wave applications,” IEEE Transactions on Microwave Theory and Techniques., vol.54, Issue.1, pp.20–30, Jan.2006.

    [25] H.-Y. Freundorfer, K. Hamed, Y.- Sun, Y. Antar, P. Frank, and D. Sawatzky, “A direct digital 2 Gb/s modulator/demodulator experiment in GaAs HBT at 30 GHz,” 2006 Asia-Pacific Microwave Conference., pp.1611–1664, Dec.2006.

    [26] J.-H. Tsai, T.-W. Huang “35-65GHz CMOS broadband modulator and demodulator with sub-harmonic for MMW wireless gigabit applications,” IEEE Transactions on Microwave Theory and Techniques., vol. 55, Issue. 10, pp. 2075–2085, Oct. 2007.

    [27] D. S. McPherson and S. Lucyszyn, “Vector modulator for W-band software radar techniques,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 8, pp. 1451–1461, Aug. 2001.

    [28] G. J. Carchon, D. M. M.-P. Schreurs, W. D. Raedt, P. V. Loock, and B. K. J. C. Nauwelaers, “A direct Ku-band linear subharmonically pumped BPSK and I/Q vector modulator in multilayer thin-film MCM-D,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 8, pp. 1374–1382, Aug. 2001.

    [29] H.-Y. Chang, T.-W. Huang, H. Wang, Y.-C. Wang, P.-C. Chao, andC.-H. Chen, “Broad-band HBT BPSK and IQ modulator MMICs and millimeter-wave vector signal characterization,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp. 908–919, Mar. 2004.

    [30] P.-S. Wu, C.-H. Wang, T.-W. Huang, and H. Wang, “Compact andbroadband millimeter-wave monolithic transformer balanced mixer,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 11, pp. 3106–3114, Oct. 2005.

    [31] S. A. Maas, The RF and Microwave Circuit Design Cookbook. Boston, MA: Artech House, 1998.

    [32] H.-Y. Chang, P.-S. Wu, T.-W. Huang, H. Wang, C.-L. Chang, and J.G. J. Chern, “Design and analysis of CMOS broadband compact highlinearitymodulators for gigabit microwave/millimeter-wave applications,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 20–30, Jan. 2006.

    下載圖示
    QR CODE