簡易檢索 / 詳目顯示

研究生: 李俊義
Lee, Chun-Yi
論文名稱: 不同握把橢圓機之生物力學分析
The Biomechanical Analysis on Different Handlebars of Elliptical Trainers
指導教授: 相子元
Shiang, Tzyy-Yuang
學位類別: 碩士
Master
系所名稱: 運動競技學系
Department of Athletic Performance
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 68
中文關鍵詞: 橢圓機運動學肌電振幅身體質量中心握把
英文關鍵詞: Elliptical trainers, kinematics, muscle activation, center of mass, handlebar
論文種類: 學術論文
相關次數: 點閱:472下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今橢圓機不僅用來健身運動還廣泛使用於醫療復健上,其提供下肢與上肢的訓練,但其並未有完整的握把方面分析。目的:分析不同握把橢圓機之生物力學影響,並建立橢圓機上肢自然運動軌跡。方法:受測者為10名健康成年男性,分以轉速60 rpm分別在三種握把前後距離 (Orig、Middle、Proximal) 和三種寬度 (Narrow、Orig、Wide) 以及3D握把與Free方式進行踩踏。橢圓機之阻力設為0 W,每次進行30秒踩踏,到達穩定之後擷取10秒的資料進行分析。資料分析運動學參數、肌電振幅和手部力量值,使用單因子變異數進行統計分析,顯著水準定為α=.05。結果:傳統橢圓機握把設計無法有效的提供上肢訓練,而利用3D握把較能提高肱二頭肌的活化效果,對於訓練上半身可能會較有幫助。在無使用握把的踩踏方式上,股二頭肌的活化有較低的現象和身體較不穩定的情況,其藉由踝關節的改變來維持身體質量中心的穩定和驅動飛輪。在改變握把前後距離可能會影響到肱三頭肌的訓練效果。結論:一、未來橢圓機可增加上肢的運動量。二、橢圓機握把軌跡可模擬手部自然擺動的軌跡。三、橢圓機握把可考量以多向度的握把設計。

    Nowadays, the elliptical is not only used for exercise but also has been widely applied to rehabilitation. It provides upper- and lower-body training. However, there are not yet any complete studies on handlebars. Purpose: The purpose of the study was to analyze the biomechanical effect of different elliptical’s handlebars and establish their natural trajectory. Methods: The subjects were ten healthy males who pedaled on the elliptical trainer at 60 rpm with handlebars in three different positions (Orig, Middle, Proximal), three different widths (Narrow, Orig, Wide) and with 3D handlebars that can move in variable directions, as well as without handlebars (Free). The elliptical trainer’s resistance was set to 0W. The subjects performed pedaling for 30 seconds per time and the 10-second data were gathered after the subjects’ pedaling reached stability. With the data, we try to analyze the kinematics parameters, muscle activation and the hand force value. One-way ANOVA was employed to determine the difference. Results: The results show that traditional handlebars were not able to provide effective upper-body training. On the other hand, the 3D handlebars were more effective to increase bicep activation and, thus, may be more helpful to upper-body training. When the subjects did not use the handlebars at all, their bicep femoris activation tended to be lower and not stable. Therefore, the subjects changed the angle of their ankles to maintain the stability of their center of mass and to push the pedals. The change of handlebars’ front/rear positions may affect the triceps training. Conclusions: Suggestions for the future design of elliptical’s handlebars: 1) to enhance the upper-body training; (2) to be able to move in variable directions; (3) to simulate the trajectory of natural arm flow motion; and (4) the incline angle of pedals.

    目次 第壹章 緒論 1 一、前言 1 二、橢圓機基本概念 3 三、橢圓機的運動模式 6 四、研究目的 9 五、研究假設 10 六、研究範圍與限制 10 七、名詞操作型定義 10 第貳章 相關文獻探討 13 一、踏板軌跡影響 13 二、轉速與阻力之影響 14 三、握把方式、踩踏方向 16 四、上肢運動 16 五、文獻總結 19 第参章 材料與方法 20 一、實驗對象 20 二、實驗設備 20 三、測試平台 22 四、實驗設計 23 五、實驗流程圖 25 六、反光球黏貼位置 26 七、空間座標圖 28 八、資料分析 30 九、統計分析 32 第肆章 結果 33 一、橢圓機握把之影響 34 二、不同握把前後距離之影響 42 三、不同握把寬度之影響 50 第伍章 討論與結論 58 一、橢圓機握把之影響 58 二、握把前後距離與寬度之影響 62 三、結論 64 引用文獻 65 個人小傳 68 表次 表3-1 反光球黏貼位置 27 表4-1 Orig、3D、Free之肱二頭肌和肱三頭肌之平均肌電振幅(單位:%) 35 表4-2 Orig、3D、Free之股直肌和股二頭肌之平均肌電振幅(單位:%) 37 表4-3 不同握把前後距離 (Orig、Middle、Proximal) 之肱二頭肌和肱三頭肌之平均肌電振幅 42 表4-4 不同握把前後距離 (Orig、Middle、Proximal) 之股直肌和股二頭肌之平均肌電振幅 (單位:%) 43 表4-5 不同握把寬度 (Narrow、Orig、Wide) 之肱二頭肌和肱三頭肌之平均肌電振幅(單位:%) 50 表4-6 不同握把寬度 (Narrow、Orig、Wide) 之股直肌和股二頭肌之平均肌電振幅(單位:%) 51 圖次 圖1-1 全球健身器材產品比例 2 圖1-2 市售健身車(左)及橢圓機(右) 3 圖1-3 上為跑步機之動作範圍,下為橢圓滑步機之動作範圍 4 圖1-4 左為前驅式飛輪,右為後驅式飛輪 6 圖1-5 橢圓機踩踏軌跡 7 圖1-6 固定式握把及活動式握把 7 圖1-7 握把寬度 11 圖1-8 握把前後距離 11 圖1-9 飛輪連桿距離地面高度 11 圖1-10 三軸自由度的握把連桿 12 圖2-1 不同踏板位置之橢圓軌跡 13 圖2-2 不同坡度之橢圓軌跡 14 圖2-3手搖車運動上的三種握把姿勢 18 圖3-1 三度空間運動分析系統 20 圖3-2 肌電訊號擷取系統 21 圖3-3 肌電貼片之黏貼位置 21 圖3-4 單軸向力量感應器 22 圖3-5 實驗用橢圓機 22 圖3-6 研究架構流程圖 25 圖3-7 Plug-in-Gait反光球標記名稱及位置 26 圖3-8 橢圓機上黏貼之反光球 28 圖3-9 各關節定義圖 29 圖3-10 分期圖 30 圖4-1 本研究機台之踏板軌跡 33 圖4-2 Orig、3D、Free在各時期之平均關節角度(A)肘關節(B)髖關節(C)膝關節(D)踝關節 38 圖4-3 Orig、3D、Free在各時期之身體質量中心變化量(A)上下變化量(B)左右變化量(C)前後變化量 40 圖4-4 Orig、3D、Free之光球移動軌跡(A)額狀面(B)橫切面(C)矢狀面 41 圖4-5 Orig、Middle、Proximal各時期之平均關節角度(A)肘關節(B)髖關節(C)膝關節(D)踝關節 45 圖4-6 Orig、Middle、Proximal在各時期之身體質心變化量(A)上下變化量(B)左右變化量(C)前後變化量 47 圖4-7 Orig、Middle、Proximal光球移動軌跡(A)額狀面(B)橫切面(C)矢狀面 48 圖4-8 Orig、Middle、Proximal在各時期之平均力量 49 圖4-9 Narrow、Orig、Wide在各時期之平均關節角度(A)肘關節(B)髖關節(C)膝關節(D)踝關節 53 圖4-10 Narrow、Orig、Wide在各時期之身體質量中心變化量(A)上下變化量(B)左右變化量(C)前後變化量 55 圖4-11 Orig、Middle、Proximal光球移動軌跡(A)額狀面(B)橫切面(C)矢狀面 56 圖4-12 Narrow、Orig、Wide在各時期之平均力量 57

    中文部分

    吳賢文(2003)。不同擺臂訓練對百公尺成績之影響。未出版碩士論文,國立體育學院,桃園縣。

    林滿妹 (2007)。橢圓機運動效益評估。未出版碩士論文,朝陽科技大學,臺中縣。

    洪征貝 (2003)。橢圓運動機之運動合成。未出版碩士論文,國立成功大學,臺南市。

    徐振凱 (2006)。以人體運動分析對橢圓滑步機作功能性評估。未出版碩士論文,朝陽科技大學,臺中縣。

    黃彥鈞 (2007)。橢圓機不同坡度運動經濟性及下肢運動軌跡研究。未出版碩士論文,國立中正大學,嘉義縣。

    簡惠蓮 (2006)。橢圓機運動之下肢運動生物力學分析。未出版碩士論文,臺灣大學,臺北市。

    經濟部技術處(ITIS),醫療器材工業年鑑,第33–58頁,2006。

    鄭巧鈴(2008)。橢圓機不同負荷型式之運動學及肌電分析。未出版碩士論文,臺北市立體育學院,臺北市。

    劉佳玲 (2004)。適應性動作調整對活動下肢生理負荷之影響-以跑步機與橢圓形軌道機為例。未出版碩士論文,朝陽科技大學,臺中縣。

    英文部分

    Browder, K. D., & Dolny, D. G. (2002). Lower extremity muscle activation during elliptical trainer exercise. Medicine and Science in Sports and Exercise, 34(5), S35.

    Bressel, E., Bressel, M., Marquez, M., & Heise, G. D. (2001). The effect of handgrip position on upper extremity neuromuscular responses to arm cranking exercise. Journal of Electromyography and Kinesiology : Official Journal of the International Society of Electrophysiological Kinesiology, 11(4), 291-298.

    Hajiefermides, G., Michael, T., Zabik, R., Liu, Y., Dawson, M., Carl, D. (2003). Comparison between stationary and moving handlebar use during forward and backward pedaling on an elliptical trainer [D-14Q free communication/poster validity: instrumentation and equations]. Medicine and Science in Sports and Exercise, 35(5), S192.

    Koga, S., Shiojiri, T., Shibasaki, M., Fukuba, Y., Fukuoka, Y., & Kondo, N. (1996). Kinetics of oxygen uptake and cardiac output at onset of arm exercise. Respiration Physiology, 103(2), 195-202.

    Koppo, K., Bouckaert, J., & Jones, AM. (2002). Oxygen uptake kinetics during high-intensity arm and leg exercise. Respiratory physiology & neurobiology, 133(3), 241-50.

    Larsen, B. T., & Heath, E. M. (2002). Energy expenditure for an elliptical trainer at three cadences. Medicine and Science in Sports and Exercise, 34(5), S295.

    Lehman, G. J. (2005). The influence of grip width and forearm pronation/supination on upper-body myoelectric activity during the flat bench press. Journal of Strength and Conditioning Research, 19(3), 587-591.

    Lu, T. W., Chien, H. L., & Chen, H. L. (2007). Joint loading in the lower extremities during elliptical exercise. Medicine and Science in Sports and Exercise, 39(9), 1651-1658.

    Mier, C. M., & Feito, Y. (2006). Metabolic cost of stride rate, resistance, and
    combined use of arms and legs on the elliptical trainer. Research Quarterly for
    Exercise and Sport, 77(4), 507-513.

    McQuade, K. J., Dawson, J., & Smidt, G. L. (1998). Scapulothoracic muscle fatigue asociated with alterations in scapulohumeral rhythm kinematics during maximum resistive shoulder elevation. The Journal of Orthopaedic and Sport Physical Therapy, 28(2), 74–80.

    Pendergast, D. R. (1989). Cardiovascular, respiratory, and metabolic responses to upper body exercise. Medicine and Science in Sports and Exercise, 21(5), S121-S125.

    Pierson-Carey, C. D., Brown, D. A., & Dairaghi, C. A. (1997). Changes in resultant pedal reaction due to ankle immobilization during pedaling. Journal of Applied Biomechanics, 13(3), 334-346.

    van der Woude, L. H., Horstman, A., Faas, P., Mechielsen, S., Bafghi, H. A., & de Koning, J. J. (2007). Power output and metabolic cost of synchronous and asynchronous submaximal and peak level hand cycling on a motor driven treadmill in able-bodied male subjects. Medical Engineering and Physics, 30(5), 574-580.

    下載圖示
    QR CODE