研究生: |
吳威毅 Wu, Wei-Yi |
---|---|
論文名稱: |
膀胱泌尿上皮鈣離子感知接受器於排尿功能之調節角色以及其對於膀胱功能障礙之治療潛力 The Modulatory Role of Bladder Urothelial Calcium-sensing Receptor in Micturition Function and Its Therapeutic Potential in Bladder Dysfunction |
指導教授: |
鄭劍廷
Chien, Chiang-Ting |
口試委員: |
吳忠信
Wu, Chung-Hsin 黃國晉 Huang, Kuo-Chin 鍾旭東 Chung, Shiu-Dong 徐世平 Hsu, Shih-Ping 鄭劍廷 Chien, Chiang-Ting |
口試日期: | 2021/12/28 |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 82 |
中文關鍵詞: | 鈣離子感知接受器 、化學感知 、逼尿肌 、排尿 、泌尿上皮 |
英文關鍵詞: | calcium-sensing receptor, chemosensory, detrusor, micturition, urothelium |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202200087 |
論文種類: | 學術論文 |
相關次數: | 點閱:70 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈣離子感知接受器能調節許多除了調鈣作用以外的生理功能。然而鈣離子感知接受器於下泌尿道功能中所扮演之角色仍尚未明瞭。本研究之目的為檢測大鼠的膀胱泌尿上皮細胞的鈣離子感知接受器是否能影響膀胱平滑肌的活性、排尿反射、骨盆神經活性、膀胱血液微循環以及膀胱炎引起的膀胱過度活躍。在此研究中,我們使用西方墨點法以與免疫組織化學染色來確認大鼠膀胱鈣離子感知接受器的表現以及表現位置。並使用離體肌肉張力儀來測定藉由專一促進劑(AC-265347)所活化的鈣離子感知接受器以及專一拮抗劑(NPS-2143)所抑制的鈣離子感知接受器如何分別去影響膀胱逼尿肌的自發性活性與收縮力。再使用膀胱壓力檢測、骨盆神經活性記錄、膀胱表面血液微循環檢測來評估膀胱內灌注鈣離子感知接受器促進劑、鈣離子感知接受器拮抗劑、氯化鈣、以及含有鈣離子感知接受器拮抗劑之氯化鈣分別所產生的作用。除此之外我們還應用多種膀胱過度活躍或功能障礙之動物模式來評估鈣離子感知接受器促進劑對於膀胱過度活躍或功能障礙的治療潛力。在研究結果中我們藉由鈣離子感知接受器與泌尿上皮特異蛋白之共定位確認鈣離子感知接受器表現在膀胱泌尿上皮。在離體實驗中,泌尿上皮鈣離子感知接受器之活化會減低乙醯膽鹼所引發的膀胱平滑肌收縮,然而泌尿上皮鈣離子感知接受器之抑制會增加膀胱平滑肌的自發性收縮振幅與自發性收縮頻率。膀胱內灌注鈣離子感知接受器促進劑會抑制排尿頻率、非排尿收縮時期的骨盆感覺神經活性、以及排尿時期的骨盆運動神經活性。膀胱內同時灌注鈣離子感知接受器拮抗劑與氯化鈣會增加排尿頻率以及骨盆感覺神經活性,然而單獨灌注氯化鈣或鈣離子感知接受器拮抗劑則無影響。除此之外,上述這些膀胱內灌注實驗處理皆不影響膀胱血液微循環。泌尿上皮鈣離子感知接受器之活化能改善膀胱過度活躍相關的尿路動力參數。我們確認泌尿上皮鈣離子感知接受器展現出化學感知功能,且是透過平滑肌與神經相關機制來調節排尿功能、而非透過膀胱血液動力之干擾來調節排尿功能,並能改善膀胱過度活躍。此研究提供了尿液中物質能透過泌尿上皮鈣離子感知接受器來調節排尿功能之有力證據,並指出泌尿上皮鈣離子感知接受器能於膀胱疾病的醫療介入中作為一個具有潛在臨床應用價值的治療標的。
Calcium-sensing receptor regulates several physiological functions other than calcitropic actions. However, the role of calcium-sensing receptor in lower urinary tract function has remained unknown. In this research, we determined whether urothelial calcium-sensing receptor in rat bladders influence detrusor activity, micturition reflex, pelvic nerve activities, bladder microcirculation, and cystitis-induced bladder hyperactivity. Western blot and immunohistochemistry were utilized to confirm the expression and the location of calcium-sensing receptor in rat bladders. In vitro myography was used to determine the spontaneous activity and contractility of bladder strips affected by activation and inhibition of calcium-sensing receptor via specific agonist, AC‐265347, and antagonist, NPS-2143 hydrochloride, respectively. Cystometry, pelvic nerve activities recording, bladder surface microcirculation detection were executed to assess the influences of intravesical infusion with AC‐265347, NPS-2143 hydrochloride, CaCl2, and CaCl2 containing NPS-2143 hydrochloride. Several bladder hyperactivity or dysfunction animal models was applied to assess the therapeutic potential of calcium-sensing receptor agonist on bladder hyperactivity or dysfunction. Calcium-sensing receptor was confirmed for its expression in bladder urothelium via the colocalization with uroplakin III A. The activation of urothelial calcium-sensing receptor via AC-265347 decreased acetylcholine-induced contraction, whereas its inhibition via NPS-2143 hydrochloride increased the amplitude and frequency of detrusor spontaneous contractions in in vitro experiments. Intravesical infusion of AC-265347 inhibited voiding frequency, pelvic afferent and efferent nerve activities during non-micturition contractions and voiding phase, respectively. Intravesical infusion of CaCl2 combined with NPS-2143 hydrochloride increased voiding frequency and pelvic afferent nerve activities, whereas CaCl2 or NPS-2143 hydrochloride alone demonstrated no effects. Moreover, these intravesical treatments didn’t affect bladder microcirculation. Activation of urothelial calcium-sensing receptor ameliorated bladder hyperactivity-related urodynamic parameters. Urothelial calcium-sensing receptor demonstrated chemosensory function, modulated micturition function via detrusor-related and neuron-related mechanisms, rather than bladder hemodynamic disturbance, and alleviated bladder hyperactivity. This study provided concrete evidence of how substances in urine mediate micturition function via urothelial calcium-sensing receptor, and implicated it as a clinical potential therapeutic target in the intervention of bladder disorders.
1. Dalghi MG, Montalbetti N, Carattino MD, Apodaca G. The Urothelium: Life in a Liquid Environment. Physiological reviews. 2020;100(4):1621-1705.
2. Urinology Think Tank Writing G. Urine: Waste product or biologically active tissue? Neurourol Urodyn. 2018;37(3):1162-1168.
3. Bonny O, Rubin A, Huang CL, Frawley WH, Pak CY, Moe OW. Mechanism of urinary calcium regulation by urinary magnesium and pH. J Am Soc Nephrol. 2008;19(8):1530-1537.
4. Parekh DJ, Pope JI, Adams MC, Brock JW, 3rd. The role of hypercalciuria in a subgroup of dysfunctional voiding syndromes of childhood. J Urol. 2000;164(3 Pt 2):1008-1010.
5. Yousefichaijan P, Rafiei M, Aziminejad A, Pakniyat A. The prevalence of hypercalciuria in girl kids with over active bladder. Journal of renal injury prevention. 2015;4(4):117-119.
6. Merrill L, Gonzalez EJ, Girard BM, Vizzard MA. Receptors, channels, and signalling in the urothelial sensory system in the bladder. Nature reviews Urology. 2016;13(4):193-204.
7. Hill WG. Control of urinary drainage and voiding. Clinical journal of the American Society of Nephrology : CJASN. 2015;10(3):480-492.
8. Fowler CJ, Griffiths D, de Groat WC. The neural control of micturition. Nature reviews Neuroscience. 2008;9(6):453-466.
9. Abbas TO, Ali TA, Uddin S. Urine as a Main Effector in Urological Tissue Engineering-A Double-Edged Sword. Cells. 2020;9(3).
10. Marshall KL, Saade D, Ghitani N, et al. PIEZO2 in sensory neurons and urothelial cells coordinates urination. Nature. 2020;588(7837):290-295.
11. Apodaca G, Balestreire E, Birder LA. The uroepithelial-associated sensory web. Kidney international. 2007;72(9):1057-1064.
12. Janssen DAW, Schalken JA, Heesakkers J. Urothelium update: how the bladder mucosa measures bladder filling. Acta physiologica. 2017;220(2):201-217.
13. Sengiku A, Ueda M, Kono J, et al. Circadian coordination of ATP release in the urothelium via connexin43 hemichannels. Scientific reports. 2018;8(1):1996.
14. Birder L, Andersson KE. Urothelial signaling. Physiological reviews. 2013;93(2):653-680.
15. Tempest HV, Dixon AK, Turner WH, Elneil S, Sellers LA, Ferguson DR. P2X and P2X receptor expression in human bladder urothelium and changes in interstitial cystitis. BJU Int. 2004;93(9):1344-1348.
16. Pandita RK, Andersson KE. Intravesical adenosine triphosphate stimulates the micturition reflex in awake, freely moving rats. J Urol. 2002;168(3):1230-1234.
17. Velasco C, Guarneri L, Leonardi A, Testa R. Effects of intravenous and infravesical administration of suramin, terazosin and BMY 7378 on bladder instability in conscious rats with bladder outlet obstruction. BJU international. 2003;92(1):131-136.
18. Andersson KE, Gratzke C, Hedlund P. The role of the transient receptor potential (TRP) superfamily of cation-selective channels in the management of the overactive bladder. BJU Int. 2010;106(8):1114-1127.
19. Nilius B, Owsianik G, Voets T, Peters JA. Transient receptor potential cation channels in disease. Physiol Rev. 2007;87(1):165-217.
20. Brady CM, Apostolidis AN, Harper M, et al. Parallel changes in bladder suburothelial vanilloid receptor TRPV1 and pan-neuronal marker PGP9.5 immunoreactivity in patients with neurogenic detrusor overactivity after intravesical resiniferatoxin treatment. BJU Int. 2004;93(6):770-776.
21. Merrill L, Malley S, Vizzard MA. Repeated variate stress in male rats induces increased voiding frequency, somatic sensitivity, and urinary bladder nerve growth factor expression. Am J Physiol Regul Integr Comp Physiol. 2013;305(2):R147-156.
22. Deruyver Y, Voets T, De Ridder D, Everaerts W. Transient receptor potential channel modulators as pharmacological treatments for lower urinary tract symptoms (LUTS): myth or reality? BJU Int. 2015;115(5):686-697.
23. Everaerts W, Zhen X, Ghosh D, et al. Inhibition of the cation channel TRPV4 improves bladder function in mice and rats with cyclophosphamide-induced cystitis. Proc Natl Acad Sci U S A. 2010;107(44):19084-19089.
24. Kennelly MJ, Devoe WB. Overactive bladder: pharmacologic treatments in the neurogenic population. Rev Urol. 2008;10(3):182-191.
25. Gorvin CM. Insights into calcium-sensing receptor trafficking and biased signalling by studies of calcium homeostasis. J Mol Endocrinol. 2018;61(1):R1-R12.
26. Zhang C, Zhang T, Zou J, et al. Structural basis for regulation of human calcium-sensing receptor by magnesium ions and an unexpected tryptophan derivative co-agonist. Sci Adv. 2016;2(5):e1600241.
27. Geng Y, Mosyak L, Kurinov I, et al. Structural mechanism of ligand activation in human calcium-sensing receptor. Elife. 2016;5.
28. Thomsen AR, Hvidtfeldt M, Brauner-Osborne H. Biased agonism of the calcium-sensing receptor. Cell Calcium. 2012;51(2):107-116.
29. Hofer AM, Brown EM. Extracellular calcium sensing and signalling. Nat Rev Mol Cell Biol. 2003;4(7):530-538.
30. Hannan FM, Babinsky VN, Thakker RV. Disorders of the calcium-sensing receptor and partner proteins: insights into the molecular basis of calcium homeostasis. J Mol Endocrinol. 2016;57(3):R127-142.
31. Hannan FM, Kallay E, Chang W, Brandi ML, Thakker RV. The calcium-sensing receptor in physiology and in calcitropic and noncalcitropic diseases. Nat Rev Endocrinol. 2018;15(1):33-51.
32. Schepelmann M, Yarova PL, Lopez-Fernandez I, et al. The vascular Ca2+-sensing receptor regulates blood vessel tone and blood pressure. American journal of physiology Cell physiology. 2016;310(3):C193-204.
33. Finney BA, del Moral PM, Wilkinson WJ, et al. Regulation of mouse lung development by the extracellular calcium-sensing receptor, CaR. J Physiol. 2008;586(24):6007-6019.
34. Greenberg HZE, Carlton-Carew SRE, Khan DM, et al. Heteromeric TRPV4/TRPC1 channels mediate calcium-sensing receptor-induced nitric oxide production and vasorelaxation in rabbit mesenteric arteries. Vascular pharmacology. 2017;96-98:53-62.
35. Tang L, Cheng CY, Sun X, Pedicone AJ, Mohamadzadeh M, Cheng SX. The Extracellular Calcium-Sensing Receptor in the Intestine: Evidence for Regulation of Colonic Absorption, Secretion, Motility, and Immunity. Frontiers in physiology. 2016;7:245.
36. Bai M, Trivedi S, Brown EM. Dimerization of the extracellular calcium-sensing receptor (CaR) on the cell surface of CaR-transfected HEK293 cells. J Biol Chem. 1998;273(36):23605-23610.
37. Leach K, Gregory KJ, Kufareva I, et al. Towards a structural understanding of allosteric drugs at the human calcium-sensing receptor. Cell Res. 2016;26(5):574-592.
38. Hannan FM, Olesen MK, Thakker RV. Calcimimetic and calcilytic therapies for inherited disorders of the calcium-sensing receptor signalling pathway. British journal of pharmacology. 2018;175(21):4083-4094.
39. Kullmann FA, Daugherty SL, de Groat WC, Birder LA. Bladder smooth muscle strip contractility as a method to evaluate lower urinary tract pharmacology. J Vis Exp. 2014(90):e51807.
40. Chien CT, Yu HJ, Lin TB, Chen CF. Neural mechanisms of impaired micturition reflex in rats with acute partial bladder outlet obstruction. Neuroscience. 2000;96(1):221-230.
41. Cannon TW, Damaser MS. Effects of anesthesia on cystometry and leak point pressure of the female rat. Life sciences. 2001;69(10):1193-1202.
42. Yang CC, Chen KH, Hsu SP, Chien CT. Augmented renal prostacyclin by intrarenal bicistronic cyclo-oxygenase-1/prostacyclin synthase gene transfer attenuates renal ischemia-reperfusion injury. Transplantation. 2013;96(12):1043-1051.
43. Chuang YC, Yoshimura N, Huang CC, Chiang PH, Chancellor MB. Intravesical botulinum toxin a administration produces analgesia against acetic acid induced bladder pain responses in rats. J Urol. 2004;172(4 Pt 1):1529-1532.
44. Su X, Nickles A, Nelson DE. Neuromodulation attenuates bladder hyperactivity in a rat cystitis model. BMC Urol. 2013;13:70.
45. Ueda N, Kondo M, Takezawa K, et al. Intravesical ATP instillation induces urinary frequency because of activation of bladder afferent nerves without inflammatory changes in mice: A promising model for overactive bladder. Biochem Biophys Res Commun. 2018;506(3):498-503.
46. Letavernier E, Verrier C, Goussard F, et al. Calcium and vitamin D have a synergistic role in a rat model of kidney stone disease. Kidney international. 2016;90(4):809-817.
47. Riccardi D, Brown EM. Physiology and pathophysiology of the calcium-sensing receptor in the kidney. American journal of physiology Renal physiology. 2010;298(3):F485-499.
48. Wu XR, Lin JH, Walz T, et al. Mammalian uroplakins. A group of highly conserved urothelial differentiation-related membrane proteins. The Journal of biological chemistry. 1994;269(18):13716-13724.
49. Sadananda P, Drake MJ, Paton JF, Pickering AE. A functional analysis of the influence of beta3-adrenoceptors on the rat micturition cycle. The Journal of pharmacology and experimental therapeutics. 2013;347(2):506-515.
50. Barahona MJ, Maina RM, Lysyy T, et al. Activation of the Calcium Sensing Receptor Decreases Secretagogue-Induced Fluid Secretion in the Rat Small Intestine. Frontiers in physiology. 2019;10:439.
51. Furuta A, Suzuki Y, Igarashi T, et al. Additive effects of intravenous and intravesical application of vibegron, a beta3-adrenoceptor agonist, on bladder function in rats with bladder overactivity. Naunyn-Schmiedeberg's archives of pharmacology. 2020;393(11):2073-2080.
52. Wang S, Jin S, Shu Q, Wu S. Strategies to Get Drugs across Bladder Penetrating Barriers for Improving Bladder Cancer Therapy. Pharmaceutics. 2021;13(2).
53. Graca JA, Schepelmann M, Brennan SC, et al. Comparative expression of the extracellular calcium-sensing receptor in the mouse, rat, and human kidney. American journal of physiology Renal physiology. 2016;310(6):F518-533.
54. Lee SP, Wu WY, Hsiao JK, Zhou JH, Chang HH, Chien CT. Aromatherapy: Activating olfactory calcium-sensing receptors impairs renal hemodynamics via sympathetic nerve-mediated vasoconstriction. Acta physiologica. 2019;225(1):e13157.
55. Andersson KE, McCloskey KD. Lamina propria: the functional center of the bladder? Neurourol Urodyn. 2014;33(1):9-16.
56. Jaggar JH, Porter VA, Lederer WJ, Nelson MT. Calcium sparks in smooth muscle. American journal of physiology Cell physiology. 2000;278(2):C235-256.
57. Thorneloe KS, Nelson MT. Ion channels in smooth muscle: regulators of intracellular calcium and contractility. Can J Physiol Pharmacol. 2005;83(3):215-242.
58. Ets HK, Seow CY, Moreland RS. Sustained Contraction in Vascular Smooth Muscle by Activation of L-type Ca(2+) Channels Does Not Involve Ca(2+) Sensitization or Caldesmon. Front Pharmacol. 2016;7:516.
59. Jiang YH, Kuo HC. Urothelial Barrier Deficits, Suburothelial Inflammation and Altered Sensory Protein Expression in Detrusor Underactivity. The Journal of urology. 2017;197(1):197-203.
60. Ito H, Pickering AE, Igawa Y, Kanai AJ, Fry CH, Drake MJ. Muro-Neuro-Urodynamics; a Review of the Functional Assessment of Mouse Lower Urinary Tract Function. Front Physiol. 2017;8:49.
61. Heppner TJ, Tykocki NR, Hill-Eubanks D, Nelson MT. Transient contractions of urinary bladder smooth muscle are drivers of afferent nerve activity during filling. J Gen Physiol. 2016;147(4):323-335.
62. Chakrabarty B, Ito H, Ximenes M, et al. Influence of sildenafil on the purinergic components of nerve-mediated and urothelial ATP release from the bladder of normal and spinal cord injured mice. British journal of pharmacology. 2019;176(13):2227-2237.
63. Vlaskovska M, Kasakov L, Rong W, et al. P2X3 knock-out mice reveal a major sensory role for urothelially released ATP. J Neurosci. 2001;21(15):5670-5677.
64. Hashitani H, Takano H, Fujita K, Mitsui R, Suzuki H. Functional properties of suburothelial microvessels in the rat bladder. The Journal of urology. 2011;185(6):2382-2391.
65. Andersson KE, Soler R, Fullhase C. Rodent models for urodynamic investigation. Neurourol Urodyn. 2011;30(5):636-646.
66. Svennersten K, Hallen-Grufman K, de Verdier PJ, Wiklund NP, Poljakovic M. Localization of P2X receptor subtypes 2, 3 and 7 in human urinary bladder. BMC Urol. 2015;15:81.
67. Mansfield KJ, Hughes JR. P2Y receptor modulation of ATP release in the urothelium. Biomed Res Int. 2014;2014:830374.
68. Birder L, Andersson KE. Animal Modelling of Interstitial Cystitis/Bladder Pain Syndrome. International neurourology journal. 2018;22(Suppl 1):S3-9.
69. Hashim H, Abrams P. How should patients with an overactive bladder manipulate their fluid intake? BJU Int. 2008;102(1):62-66.
70. Peyronnet B, Mironska E, Chapple C, et al. A Comprehensive Review of Overactive Bladder Pathophysiology: On the Way to Tailored Treatment. Eur Urol. 2019;75(6):988-1000.
71. Leron E, Weintraub AY, Mastrolia SA, Schwarzman P. Overactive Bladder Syndrome: Evaluation and Management. Curr Urol. 2018;11(3):117-125.
72. Yamaguchi O, Nishizawa O, Takeda M, et al. Clinical guidelines for overactive bladder. Int J Urol. 2009;16(2):126-142.
73. Schmid DM, Sauermann P, Werner M, et al. Experience with 100 cases treated with botulinum-A toxin injections in the detrusor muscle for idiopathic overactive bladder syndrome refractory to anticholinergics. J Urol. 2006;176(1):177-185.
74. Abrams P, Andersson KE. Muscarinic receptor antagonists for overactive bladder. BJU Int. 2007;100(5):987-1006.
75. Reitz A, Schurch B. Intravesical therapy options for neurogenic detrusor overactivity. Spinal Cord. 2004;42(5):267-272.
76. Igawa Y, Aizawa N, Homma Y. Beta3-adrenoceptor agonists: possible role in the treatment of overactive bladder. Korean journal of urology. 2010;51(12):811-818.
77. Yu Y, de Groat WC. Sensitization of pelvic afferent nerves in the in vitro rat urinary bladder-pelvic nerve preparation by purinergic agonists and cyclophosphamide pretreatment. American journal of physiology Renal physiology. 2008;294(5):F1146-1156.