研究生: |
葉婷婷 Yeh, Ting-Ting |
---|---|
論文名稱: |
比較不同分離策略搭配液相層析串聯式質譜儀之磷酸化蛋白體學研究 Comparison of Different Fractionation Strategies for In-depth Phosphoproteomics by Liquid Chromatography Tandem Mass Spectrometry |
指導教授: |
陳頌方
Chen, Sung-Fang |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 85 |
中文關鍵詞: | 磷酸化胜肽 、羥基脂肪酸修飾之金屬氧化物層析法 、強陽離子交換層析法 、靜電排斥親水交互作用層析法 、液相等電點聚焦分離法 、液相層析串聯式質譜儀 |
英文關鍵詞: | fractionation, ERLIC |
DOI URL: | https://doi.org/10.6345/NTNU202203937 |
論文種類: | 學術論文 |
相關次數: | 點閱:205 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
磷酸化蛋白體學為近年來許多生化分析學家致力研究的領域,原因是蛋白質的磷酸化對於調控蛋白質活性、細胞間訊息傳遞等生理機制扮演著極為重要的角色。然而,具有磷酸化修飾的蛋白質僅占總體蛋白質的一部份,經水解後所形成的磷酸化胜肽含量偏低,在一般的質譜鑑定流程中容易被含量較高的一般胜肽遮蔽;為了降低樣品的複雜度,並有效提升磷酸化胜肽的鑑定機率,在本研究中使用了羥基脂肪酸修飾之金屬氧化物層析法 (aliphatic hydroxy acid-modified metal oxide chromatography, HAMMOC),先純化出小鼠巨噬細胞株(RAW 264.7)當中的磷酸化胜肽,再選用三種不同的分離方法(fractionation)進行比較。方法分別為強陽離子交換層析法(strong cation chromatography, SCX)、靜電排斥親水性交互作用層析法(electrostatic repulsion hydrophilic interaction chromatography, ERLIC)及液相等電點聚焦分離法(solution isoelectric focusing electrophoresis, sIEF),最後將經三種不同方法分離出來的磷酸化胜肽送入液相層析串聯式質譜儀(LC-MS/MS)進行分析。在蛋白質樣品起始量皆為1毫克的情況下,鑑定到的磷酸化胜肽數目分別如下: SCX-LC-MS/MS 可鑑定到 4336 條磷酸化胜肽、ERLIC-LC-MS/MS為 2064 條磷酸化胜肽,sIEF-LC-MS/MS 則是 2424 條磷酸化胜肽。三種方法總共鑑定到5744條不重複的磷酸化胜肽及 2159 個磷酸化蛋白質,且僅在單一方法中單獨出現的磷酸化胜肽個數依序為 SCX (2430)、ERLIC (438)、sIEF (751)。由此可知,本研究中所選用的三種分離方法具有良好的互補性,能有效提升對磷酸化胜肽的鑑定能力,以期應用於分析磷酸化蛋白體學的研究中。
Phosphorylation is one of the major post-translational modifications that plays a significant role in protein activity and cell signaling. However, it is difficult to detect protein phosphorylation because its low abundance and the analysis can be hindered by high abundant non-phosphoproteins. In order to improve the identification efficiency of phosphopeptides and reduce the complexity of sample, aliphatic hydroxy acid-modified metal oxide chromatography (HAMMOC) is applied for phosphopeptides enrichment from RAW 264.7 cell lysates. Moreover, strong cation chromatography (SCX), electrostatic repulsion hydrophilic interaction chromatography (ERLIC) and solution isoelectric focusing (sIEF) were investigated for phosphopeptides fractionation strategies following by liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. Total 5744 non-redundant phosphopeptides and 2159 phosphoproteins were identified from 1 mg RAW 264.7 cell lysates combining three fractionation approach. Besides, 4336, 2064 and 2424 phosphopeptides were identified by SCX-LC-MS/MS, ERLIC-LC-MS/MS and sIEF-LC/MS-MS, including 2430, 438 and 751 phosphopeptides only found in SCX, ERLIC and sIEF fractionations specifically. In conclusion, the strategies of three different fractionations have great orthogonality, which improve identification efficiency of phosphopeptides and be suitable for in-depth phosphoproteomic research.
1. International Human Genome Sequencing Consortium, Finishing the euchromatic sequence of the human genome. Nature, 2004. 431(7011): p. 931-945.
2. Marc R. Wilkins, Keith L. Williams, Ron D. Appel, Denis F. Hochstrasser, Proteome Research: New Frontiers in Functional Genomics. 1997, New York: Springer.
3. Hester A. Doyle, Mark J. Mamula., Post-translational protein modifications in antigen recognition and autoimmunity. TRENDS in Immunology, 2001. Vol.22(No.8): p. 443-449.
4. Ludvig M. Sollid, Molecular basis of celiac disease. Review of Immunology, 2000. 18: p. 53–81.
5. Albert Sickmann, Marcus Mreyen, Helmut E. Meyer, Mass spectrometry—a key technology in proteome research, in Proteomics of Microorganisms. 2003, Springer. p. 141-176.
6. Cieśla, J., Tomasz Frączyk, and Wojciech Rode. , Phosphorylation of basic amino acid residues in proteins: important but easily missed. Acta Biochimica Polonica, 2011. 58(2): p. 137-148.
7. Jonathan A. Schumacher, David K. Crockett, Kojo S.J. Elenitoba-Johnson, Megan S. Lim, Evaluation of enrichment techniques for mass spectrometry: identification of tyrosine phosphoproteins in cancer cells. The Journal of Molecular Diagnostics, 2007. 9(2): p. 169-177.
8. Cheng-Xin Gong, Toolsee J. Singh, Inge Grundke-Iqbal, Khalid Iqbal, Phosphoprotein phosphatase activities in Alzheimer disease brain. Journal of neurochemistry, 1993. 61(3): p. 921-927.
9. Philip Cohen, The role of protein phosphorylation in human health and disease. European Journal of Biochemistry, 2001. 268(19): p. 5001-5010.
10. Jörg Reinders, Albert Sickmann, State‐of‐the‐art in phosphoproteomics. Proteomics, 2005. 5(16): p. 4052-4061.
11. Rui Zhao, Shi-Jian Ding, Yufeng Shen, David G. Camp II, Eric A. Livesay, Harold Udseth, Richard D. Smith, Automated metal-free multiple-column nanoLC for improved phosphopeptide analysis sensitivity and throughput. Journal of Chromatography B, 2009. 877(8): p. 663-670.
12. Stefan R. Schmidt, Fritz Schweikart, Martin E. Andersson, Current methods for phosphoprotein isolation and enrichment. Journal of Chromatography B, 2007. 849(1): p. 154-162.
13. Jerker Porath, Jan Carlsson, Ingmar Olsson, Greta Belfrage, Metal chelate affinity chromatography, a new approach to protein fractionation. Nature, 1975. 258: p. 598–599.
14. Lennart Andersson, Jerker Porath, Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Analytical Biochemistry, 1986. 154(1): p. 250–254.
15. DAVID C.A. NEVILLE, CHRISTINE R. ROZANAS, ELMER M. PRICE, DARREN B. GRUIS, A.S. VERKMAN, R. REID TOWNSEND, Evidence for phosphorylation of serine 753 in CFTR using a novel metal-ion affinity resin and matrix-assisted laser desorption mass spectrometry. Protein Science, 1997. 6(11): p. 2436–2445.
16. Houjiang Zhou, Teck Y. Low, Marco L. Hennrich, Henk van der Toorn, Thomas Schwend, Hanfa Zou, Shabaz Mohammed and Albert J. R. Heck, Enhancing the Identification of Phosphopeptides from Putative Basophilic Kinase Substrates Using Ti (IV) Based IMAC Enrichment. Molecular & Cellular Proteomics, 2011. 10(10): p. 1-14.
17. Chia-Feng Tsai, Yi-Ting Wang, Yet-Ran Chen, Chen-Yu Lai, Pei-Yi Lin, Kuan-Ting Pan, Jeou-Yuan Chen, Kay-Hooi Khoo and Yu-Ju Chen, Immobilized Metal Affinity Chromatography Revisited: pH/Acid Control toward High Selectivity in Phosphoproteomics. Journal of Proteome Research, 2008. 7(9): p. 4058–4069.
18. Yoshihiko IKEGUCHI, Hiroshi NAKAMURA, Determination of organic phosphates by column-switching high performance anion-exchange chromatography using on-line preconcentration on titania. Analytical Sciences, 1997. 13(6): p. 479–483.
19. Kazuhiro Imai, Sam Li Fong Yau, Quantitative Proteome Analysis : Methods and Applications. 2013: Pan Stanford
20. Naoyuki Sugiyama, Takeshi Masuda, Kosaku Shinoda, Akihiro Nakamura,Masaru Tomita, and Yasushi Ishihama, Phosphopeptide Enrichment by Aliphatic Hydroxy Acid-modified Metal Oxide Chromatography for Nano-LC-MS/MS in Proteomics Applications. Molecular & Cellular Proteomics, 2007. 6(6): p. 1103-1109.
21. Judit Villén and Steven P Gygi, The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nature Protocols, 2008. 3(10): p. 1630–1638.
22. Andrew J. Alpert, Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. Journal of Chromatography A, 1990. 499(19): p. 177-196.
23. Andrew J. Alpert, Electrostatic Repulsion Hydrophilic Interaction Chromatography for Isocratic Separation of Charged Solutes and Selective Isolation of Phosphopeptides. Analytical Chemistry, 2008. 80(1): p. 62-76.
24. Nobelprize.org. Arne Tiselius - Biographical. Nobel Media AB 2014. Web. 2014 24 May 2016. ]; Available from: http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1948/tiselius-bio.html.
25. Tobias C. Walther, Matthias Mann, Mass spectrometry–based proteomics in cell biology. The Journal of Cell Biology, 2010. 190(4): p. 491–500.
26. Thierry Rabilloud, Ali R. Vaezzadeh, Noelle Potier, Cécile Lelong, Emmanuelle Leize-Wagner and Mireille Chevallet, Power and limitations of electrophoretic separations in proteomics strategies. Mass Spectrometry Reviews, 2009. 28(5): p. 816–843.
27. Sameh Magdeldin, Keiko Yamamoto, Yutaka Yoshida, Bo Xu, Ying Zhang, Hidehiko Fujinaka, Eishin Yaoita, John R. YatesIII, and Tadashi Yamamoto, Deep proteome mapping of mouse kidney based on OFFGel prefractionation reveals remarkable protein post-translational modifications. Journal of proteome research, 2014. 13(3): p. 1636–1646.
28. 吳慧芬、呂麗琪, 二○○二年的諾貝爾化學獎-質譜儀分析技術的突破開展生化科技新領域. 科學發展, 2003. 362: p. 48-51.
29. Jennifer Griffiths, A brief history of mass spectrometry. Analytical Chemistry, 2008. 80(15): p. 5678–5683.
30. Matthias S. Wilm, Matthias Mann, Electrospray and Taylor-Cone theory, Dole's beam of macromolecules at last? . International Journal of Mass Spectrometry and Ion Processes., 1994. 136(2-3): p. 167-180.
31. 趙春美, 環檢之窗-精彩100 : 環境檢驗百寶箱. 2011: 行政院環境保護署環境檢驗所.
32. Jodie V. Johnson, Richard A. Yost, Paul E. Kelley, Donald C. Bradford, Tandem-in-space and tandem-in-time mass spectrometry: triple quadrupoles and quadrupole ion traps. Analytical Chemistry, 1990. 62(20): p. 2162–2172.
33. Alexander Makarov, Electrostatic Axially Harmonic Orbital Trapping: A High-Performance Technique of Mass Analysis. Analytical Chemistry, 2000. 72(6): p. 1156–1162.
34. Alexander Makarov, Eduard Denisov, Oliver Lange, Stevan Horning, Dynamic Range of Mass Accuracy in LTQ Orbitrap Hybrid Mass Spectrometer. Journal of the American Society for Mass Spectrometry, 2006. 17(7): p. 977–982.
35. Pehr Edman, Method for determination of the amino acid sequence in peptides. Acta Chemica Scandinavica, 1950. 4(7): p. 283-293.
36. Haroun N. Shah, Saheer E. Gharbia, Mass Spectrometry for Microbial Proteomics. 2010: John Wiley & Sons.
37. Tanveer S. Batth , Chiara Francavilla and Jesper V. Olsen, Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics. Journal of proteome research, 2014. 13(12): p. 6176-6186.
38. Mostafa Zarei, Adrian Sprenger, Fabian Metzger, Christine Gretzmeier, and Joern Dengjel, Comparison of ERLIC–TiO2, HILIC–TiO2, and SCX–TiO2 for global phosphoproteomics approaches. Journal of proteome research, 2011. 10(8): p. 3474-3483.
39. Piliang Hao, Tiannan Guo, Siu Kwan Sze, Simultaneous Analysis of Proteome, Phospho- and Glycoproteome of Rat Kidney Tissue with Electrostatic Repulsion Hydrophilic Interaction Chromatography. PLOS One, 2011. 6(2).
40. 經濟部工業局. 禁止化學武器公約資訊推廣網. 2015; Available from: http://www.chemicalweapon.url.tw/subpage8.html.
41. David-Olivier D Azulay, Hendrik Neubert, Mireia Fernández Ocaña, Visualisation tool for peptide fractionation data in proteomics: application to OFFGEL isoelectric focussing. BMC Bioinformatics, 2010. 11(371).
42. Michael F. Chou, Daniel Schwartz, Biological sequence motif discovery using motif-x. Current Protocols in Bioinformatics, 2011. 13(13): p. 15-24.
43. Daniel Schwartz, Steven P Gygi, An iterative statistical approach to the identification of protein phosphorylation motifs from large-scale data sets. Nature Biotechnology, 2005. 23(11): p. 1391-1398.