研究生: |
陳弘奇 |
---|---|
論文名稱: |
以強化突變機制之基因演算法求解多目標彈性零工式工廠排程問題 A Genetic Algorithm with Enhanced Mutation forMultiobjective Flexible Job Shop Scheduling Problems |
指導教授: | 蔣宗哲 |
學位類別: |
碩士 Master |
系所名稱: |
資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 38 |
中文關鍵詞: | 基因演算法 、多目標 、柏拉圖最佳化 、彈性零工式工廠排程問題 |
論文種類: | 學術論文 |
相關次數: | 點閱:461 下載:29 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
如何有效分配資源以及提高生產效率、降低生產成本,是製造業一直以來想要達到的目標,這就是為何十幾年來生產排程問題可以如此的熱門。排程問題大部分都屬於組合最佳化問題,零工式工廠排程問題(Job-shop Scheduling Problem, JSP)便是其一。由於此類問題的複雜度很高,通常難以求得最佳解。彈性零工式工廠排程問題(Flexible Job-shop Scheduling Problem, FJSP)則為零工式工廠排程問題的延伸,主要透過分配製程的作業機台(路由問題),以及變換製程在機台上的順序(排序問題)來最小化最大完工時間(makespan)、機台總工作量(total workload)和最大機台工作量(maximum workload)。
本論文所提出的演算法主體為基因演算法(Genetic Algorithm, GA),搭配交換關鍵製程以及重新插入關鍵製程來做突變,並且強化插入關鍵製程的方式。而為了求得在多個目標上的最佳化,本論文採用柏拉圖分級法(Pareto ranking)當作選擇機制,目的在於找到柏拉圖最佳解(Pareto optimal solutions)。
實驗的問題為 BR data 的十個測試問題。本論文提出的演算法在非凌越解(non-dominated solutions)個數較多的問題中能大幅度更新目前的已知非凌越解。
Brandimarte, P. (1993). Routing and scheduling in a flexible job shop by tabu search. Annals of Operations Research, 41, 157–183.
Chiang, T.C., & Lin, H.J. (2011). Flexible job shop scheduling using a multiobjective memetic algorithm. Lecture Notes in Artificial Intelligence (Proc. of International Conference on Intelligent Computing), 6839, (pp. 49–56).
Chiang, T.C., & Lin, H.J. (2013). A simple and effective evolutionary algorithm for multiobjective flexible job shop scheduling. International Journal of Production Economics, 141(1), (pp. 87–98).
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6, 182–197.
Giffler, B., & Thomspon, G.L. (1960). Algorithms for solving production-scheduling problems. Operations Research, 8, 487–503.
Goldberg, D.E. (1989). Genetic algorithm in search, optimization and machine learning. Reading, MA: Addison-Wesley.
Horn, J., & Nafpliotis, N. (1993). Multiobjective optimization using the niched Pareto genetic algorithm. University Illinois at Urbana-Champain, Urbana, IL, IlliGAL Report 93005.
Kacem, I., Hammadi, S., & Borne, P. (2002). Approach by localization and multi-objective evolutionary optimization for flexible job-shop scheduling problem. IEEE Transactions on Systems, Man, and Cybernetics Part C, 32, 1–13.
Li, H., & Zhang, Q. (2009). Multiobjective optimization problems with complicated Pareto sets MOEA/D and NSGA-II. IEEE Transactions on Evolutionary Compu- tation, 13(2), 284–302.
Li, J.Q., Pan, Q.K., & Liang, Y.C. (2010). An effective hybrid tabu search algorithm for multi-objective flexible job-shop scheduling problems. Computers & Industrial Engineering, 59, 647–662.
Li, J.Q., Pan, Q.K., & Chen, J. (2012). A hybrid Pareto-based local search algorithm for multi-objective flexible job shop scheduling problems. International Journal of Production Research, 50(4), 1063–1078.
Mastrolilli, M., & Gambardella, L.M. (2000). Effective neighborhood functions for the flexible job shop problem. Journal of Scheduling, 3, 3–20.
Nowicki, E., & Smutnicki, C. (1996). A fast taboo search algorithm for the job-shop problem. Management Science, 42, 797–813.
Pezzella, F., Morganti, G., & Ciaschetti, G. (2008). A genetic algorithm for the flexible job-shop scheduling problem. Computers & Operations Research, 35, 3202–3212.
Wang, X., Gao, L., Zhang, C., & Shao, X. (2010). A multi-objective genetic algorithm based on immune and entropy principle for flexible job-shop scheduling problem. International Journal of Advanced Manufacturing Technology, 51, 757–767.
Xia, W., & Wu, Z. (2005). An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems. Computers & Industrial Engineering, 48, 409–425.
Xing, L.N., Chen, Y.W., & Yang, K.W. (2009). Multi-objective flexible job shop scheduling: design and evaluation by simulation modeling. Applied Soft Computing, 9, 362–376.
Yazdani, M., Amiri, M., & Zandieh, M. (2010). Flexible job-shop scheduling with parallel variable neighborhood search algorithm. Expert Systems with Appli- cations, 37, 678–687.
Zitzler, E., Laumanns, M., & Thiele, L. (2002). SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Giannakoglu, K.C., et al. (Eds.), Evolutionary Methods for Design, Optimization, and Control, (pp. 19–26).
Zribi, N., Kacem, I., A. Kamel, E., & Borne, P. (2007). Assignment and Scheduling in Flexible Job-shops by Hierarchical Optimization. IEEE Transactions on System, Man, and Cybernetics Part C, 37(4), 652–661.