簡易檢索 / 詳目顯示

研究生: 游毓珈
Yu-Chia Yu
論文名稱: 熱處理效應對溶膠凝膠法製備之氧化鎢薄膜電致色變特性分析
Effect of thermal annealing and Characterization of electrochromic WO3 film synthesized by sol-gel method
指導教授: 程金保
Cheng, Chin-Pao
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 113
中文關鍵詞: 氧化鎢溶膠凝膠法電致色變
英文關鍵詞: tungsten oxide, sol-gel method, electrochromic property
論文種類: 學術論文
相關次數: 點閱:197下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分別以金屬烷氧化合物(M-OR)及金屬離子(MZ+)為主製作氧化鎢薄膜鍍液。以FTIR鑑定前驅粉體之成分,以及使用TGA與DSC檢測前驅粉體之熱穩定性。前驅溶液以異丙醇為溶劑,檸檬酸為蟄和配位基(chelating ligand),使用旋塗方式將氧化鎢薄膜塗佈於ITO玻璃基板上,並比較氧化鎢薄膜未退火狀態及350 ℃溫度於不同退火條件(大氣退火、真空退火與氧氣氛退火)之電致色變性質分析。本研究中使用AFM、SEM與XRD觀察鍍膜表面形貌與微結構,並以LiClO4/PC為電解質,對元件施加± 2.0 V電壓後觀察薄膜在UV/VIS/NIR光譜 (190 – 2600 nm)實驗中著-去色穿透率變化與電化學性質。
    由SEM觀察薄膜表面形貌發現氧化鎢薄膜表面皆具有微小裂縫與微孔現象,有利電致色變過程電子與離子的進出。由光譜圖可發現,氧化鎢薄膜在紫外光波段穿透率幾乎為零,於近紅外光譜區段具有一定的阻隔能力,穿透率約在10%以下。實驗結果以迴流方式去除過氧化氫之金屬烷氧化合物前驅粉體,製備之氧化鎢鍍膜,並於氧氣氛退火之試片具有最佳電致色變性質。此外,在可見光波長範圍氧氣氛退火之薄膜具有較高的穿透率,而經由真空退火的薄膜穿透率較低。最後,氧化鎢薄膜之能隙在經過大氣及真空退火之後,著色態能隙與未退火薄膜能隙比較有下降的現象。

    The sol-gel technique has been employed for synthesizing three precursor materials for the deposition of tungsten oxide based electrochromic films, including M-OR and MZ+. The characteristics of these precursor materials have been tested by FTIR、TGA and DSC. The precursor based solid materials were dissolved in isopropyl alcohol individually and citric acid was used as organic chelating agent to get the coating gel. Then the sol-gel process is used to prepare the tungsten oxide thin film on indium tin oxide conductive glass (ITO glass) by the way of spin coating. The annealing treatment is conducted at 350℃ under the open air, vacuum, and oxygen environment, respectively, in order to understand the influence of different heat treatment environment on the electrochromic property of tungsten oxide film. The atomic force microscope (AFM) and scanning electron microscope (SEM) were used to observe the surface morphology and it is found that there are some small cracks and micropores on the surface of tungsten oxide film, which are favorable for the access of electrons and ions during the electrochromic process.
    The experimental results indicate that the solution was refluxed at 55 ℃ for 24 hours to decompose excess hydrogen peroxide can make the thin films with better electrochromic property. The spectrogram shows that the ultraviolet (UV) transmittance of colored tungsten oxide film is nearly zero, and there is a certain isolating ability under near infrared (NIR) spectrum region, the transmittance is below about 10%. The thin films annealed at oxygen environment show higher transmittance modulation between colored and bleached state under visible light (VIS) spectrum region, but the films annealed at vacuum environment have lower transmittance modulation. Finally, the band gap of colored state of the tungsten oxide films annealed under open air and vacuum environment is lower than the band gap of as-deposited film.

    第一章 前言…………………………………………….……………………..1 1-1 研究背景…………………………………………….……………...…..1 1-2 研究動機與目的………………..………………….…………….……..3 第二章 文獻回顧…………………………………………….………………..5 2-1 電致色變簡介.…………………………………….…….……….……..5 2-2 三氧化鎢基本性質……………………………….……………...……10 2-2-1 使用溶膠凝膠法製備WO3薄膜…………….………………...…10 2-2-2 電致色變機制……………………………...….…………...……..12 2-3 溶膠凝膠法……………………………….…………………………...15 2-3-1 溶膠凝膠製備原理………………….……………...…………….16 第三章 實驗方法與步驟……………………………….……………………20 3-1 實驗方法…..…………………………………………………………..21 3-1-1 前驅粉體(precursor based solid materials)製備………………..21 3-1-2 清洗試片..…………………..…………..………….…...………...23 3-1-3 前驅鍍液調配………………………….………….……………...23 3-1-4 覆膜方法………………………...……………………...………...25 3-2 性質鑑定………..……………………...……………………………...27 3-2-1 前驅粉體分析……………………..……………………………...27 3-2.2 薄膜性質觀察分析…………………...…………………………...27 第四章 結果與討論…………………...……………………….…………….31 4-1前驅粉體成分分析…………………...……………………….……….31 4-1-1 傅立葉轉換紅外線光譜儀分析…………………...….….………32 4-1-2 熱重量分析…………………...…………………………………..34 4-1-3熱示差掃描卡計分析…………………...………………………...36 4-2 添加檸檬酸之效應…………...……………………………………….37 4-3 氧化鎢薄膜表面型態觀…………………...………………………….39 4-3-1 AFM表面粗糙度與膜厚測量………………...……….………….39 4-3-2 SEM表面形貌觀察…………………...…………………..……….44 4-3-3XRD薄膜結晶構造觀察…………………...………………..…….49 4-4 氧化鎢薄膜光學性質分析…………………...…………….…………52 4-4-1 未退火處理………………...………………………….………….53 4-4-2 大氣350℃退火…………………...……………………...……….59 4-4-3 真空350℃退火…………………...…………………...………….64 4-4-4 氧氣氛350℃退火…………………...…………………...……….69 4-4-5 光能隙計算………………….…………………………...……….76 4-5 電化學性質量測…………………...…………………….…...……….83 4-5-1 循環伏安法…………………...………………………..…...…….83 4-5-2 響應時間………………...…………………………..…………....88 4-6 綜合討論…………………...…………………….…………...……….94 第五章 結論與展望…………...………………………………….………….95 5-1 前驅物之影響…………………...…………………………………….95 5-2 退火環境之影響…………………...………………………………….95 5-3 未來展望…………………...…………………………………………96 參考文獻……………………………………………………………………...97 表目錄 表1-1 濺鍍法與溶膠凝膠法之比較…………………………………………..4 表2-1 電致色變過渡金屬氧化物色變比較表………………………………..7 表3-1 本研究使用化學藥品一覽表………………………………………...20 表4-1 三氧化鎢鍍液配方…………………………………………………...31 表4-2 前驅粉體FTIR吸收峰對照表………………………………………32 表4-3 不同退火條件下之氧化鎢薄膜光學性質比較表…………………...75 表4-4 不同退火條件下之氧化鎢薄膜著-去色能隙比較表………………..82 表4-5 氧化鎢薄膜在不同退火條件下之著-去色響應時間………………..93 圖目錄 圖1-1 節能窗分類表………………...…………….……..………...…………2 圖2-1 節能窗實際應用(a)建築外觀(b)室內視覺……………………..……6 圖2-2 具電致色變過渡元素分類表………………………………………….6 圖2-3 電致色變覆膜方式…………………………………………………….8 圖2-4 電致色變裝置示意圖………………………………………………….9 圖2-5 WO3單位晶格 (a)(Li, Na)WO3與(b)HWO3………………………14 圖2-6 凝膠化過程…………………………………………………………...19 圖3-1 以金屬為前驅粉體製備流程圖……………………………………...22 圖3-2 以金屬烷氧化合物前驅粉體製備流程圖…………………………...22 圖3-3 旋轉塗佈機…………………………………………………………...24 圖3-4 檸檬酸之分子結構式………………………………………………...24 圖3-5 旋轉塗佈法示意圖…………………………………………………...26 圖3-6 整體實驗流程圖……………………………………………………...26 圖3-7 UV/VIS/NIR分光光譜儀……………………………………………...29 圖3-8 循環伏安電位測定裝置示意圖……………………………………...30 圖4-1 前驅粉末實體圖(A)前驅物一號氧化鎢粉末;(B)前驅物二號氧化鎢粉末;(C)前驅物三號氧化鎢粉末…………………...…………31 圖4-2 前驅粉體FTIR曲線圖(A)前驅物一號氧化鎢粉末;(B)前驅物二號氧化鎢粉末;(C)前驅物三號氧化鎢粉末…………………...…33 圖4-3 前驅物一號氧化鎢粉末TGA曲線圖……………………….……….34 圖4-4 前驅物二號氧化鎢粉末TGA曲線圖……………………….………35 圖4-5 前驅物三號氧化鎢粉末TGA曲線圖……………….………………35 圖4-6 前驅粉體DSC分析曲線(A)前驅物一號;(B)前驅物二號;(C)前驅物三號…………………………………………………………...36 圖4-7 未添加檸檬酸之氧化鎢薄膜之紫外光-紅外光穿透光譜……..……37 圖4-8 未添加檸檬酸之氧化鎢薄膜(a)初鍍;(b)著色………………………38 圖4-9 添加檸檬酸之氧化鎢薄膜之紫外光-紅外光穿透光譜……………..38 圖4-10 添加檸檬酸之氧化鎢薄膜(a)初鍍;(b)著色…………………..……38 圖4-11 氧化鎢薄膜未退火之AFM圖:(a)前驅物一號;(b)前驅物二號;(c)前驅物三號………………………………………………….……40 圖4-12 氧化鎢薄膜大氣350℃退火之AFM圖:(a)前驅物一號;(b)前驅物二號;(c)前驅物三號…………………………………………..……41 圖4-13 氧化鎢薄膜真空350℃退火之AFM圖:(a)前驅物一號;(b)前驅物二號;(c)前驅物三號…………………………………………..……42 圖4-14 氧化鎢薄膜真空350℃退火之AFM圖:(a)前驅物一號;(b)前驅物二號;(c)前驅物三號…………………………………………..……43 圖4-15 氧化鎢薄膜未退火(B)以及大氣350℃退火(A)之SEM圖(註:數字1,2,3分別為前驅物1,2,3)……………………………………...……45 圖4-16 氧化鎢薄膜真空350℃退火(V)以及氧氣氛350℃退火(O)之SEM圖(註:數字1,2,3分別為前驅物1,2,3)………………………………46 圖4-17 氧化鎢薄膜未退火(B)以及大氣350℃退火(A)之SEM圖(註:數字1,2,3分別為前驅物1,2,3)………….…………………………….…47 圖4-18 氧化鎢薄膜真空350℃退火(V)以及氧氣氛350℃退火(O)之SEM圖(註:數字1,2,3分別為前驅物1,2,3)…………………..……………48 圖4-19 氧化鎢薄膜未退火之XRD圖:(a)前驅物一號;(b)前驅物二號;(c)前驅物三號 ……………………………………………..…………50 圖4-20 氧化鎢薄膜大氣350℃退火之XRD圖:(A)前驅物一號;(B)前驅物二號;(C)前驅物三號……………………………………………50 圖4-21 氧化鎢薄膜真空350℃退火之XRD圖:(A)前驅物一號;(B)前驅 物二號;(C)前驅物三號……………………………………………51 圖4-22 氧化鎢薄膜氧氣氛350℃退火之XRD圖:(A)前驅物一號;(B)前 驅物二號;(C)前驅物三號………………………………………51 圖4-23 ITO玻璃之UV-VIS-NIR 光譜圖………………………………..53 圖4-24 前驅物一號未退火之UV-VIS-NIR 光譜(a)穿透光譜;(b)反射光譜;(c)吸收光譜……………………………………….……………55 圖4-25 前驅物二號未退火之UV-VIS-NIR 光譜(a)穿透光譜;(b)反射光譜;(c)吸收光譜………………………………….…………………56 圖4-26 前驅物三號未退火之UV-VIS-NIR 光譜(a)穿透光譜;(b)反射光譜;(c)吸收光譜…………………………………….………………57 圖4-27 氧化鎢薄膜未退火之實體圖(a)初鍍;(b)著色(註:數字1,2,3分別為前驅物1,2,3)…………………………..………………………….58 圖4-28 前驅物一號350℃大氣退火之UV-VIS-NIR 光譜(a)穿透光譜;(b)反射光譜;(c)吸收光譜…………………………………...…………60 圖4-29 前驅物二號350℃大氣退火之UV-VIS-NIR 光譜(a)穿透光譜;(b)反射光譜;(c)吸收光譜…………………………...…………………61 圖4-30 前驅物三號350℃大氣退火之UV-VIS-NIR 光譜(a)穿透光譜;(b)反射光譜;(c)吸收光譜…………………...…………………………62 圖4-31 氧化鎢薄膜350℃大氣退火之實體圖(a)初鍍;(b)著色(註:數字1,2,3分別為前驅物1,2,3)………………..……………………………….63 圖4-32 前驅物一號350℃真空退火之UV-VIS-NIR 光譜(a)穿透光譜;(b)反射光譜;(c)吸收光譜…………………………………...…………65 圖4-33 前驅物二號350℃真空退火之UV-VIS-NIR 光譜(a)穿透光譜;(b)反射光譜;(c)吸收光譜……………………...………………………66 圖4-34 前驅物三號350℃真空退火之UV-VIS-NIR 光譜(a)穿透光譜;(b)反射光譜;(c)吸收光譜……………………...………………………67 圖4-35氧化鎢薄膜350℃真空退火之實體圖(a)初鍍;(b)著色(註:數字1,2,3分別為前驅物1,2,3)……………..………………………………….68 圖4-36 前驅物一號350℃氧氣氛退火之UV-VIS-NIR 光譜:(a)穿透光譜;(b)反射光譜;(c)吸收光譜……………………………..……………70 圖4-37 前驅物二號350℃氧氣氛退火之UV-VIS-NIR 光譜:(a)穿透光譜;(b)反射光譜;(c)吸收光譜……………………………..……………71 圖4-38 前驅物三號350℃氧氣氛退火之UV-VIS-NIR 光譜:(a)穿透光譜;(b)反射光譜;(c)吸收光譜……………………………..……………72 圖4-39氧化鎢薄膜350℃氧氣氛退火之實體圖:(a)初鍍;(b)著色(註:數字1,2,3分別為前驅物1,2,3)……………..…………………………73 圖4-40 肉眼之光譜光效曲線……………………………………………….75 圖4-41 氧化鎢薄膜未退火之著-去色能隙圖:(a)前驅物一號;(b)前驅物二號;(c)前驅物三號…………………………………………………78 圖4-42 氧化鎢薄膜350℃大氣退火之著-去色能隙圖:(a)前驅物一號;(b)前驅物二號;(c)前驅物三號………………………………………79 圖4-43 氧化鎢薄膜350℃真空退火之著-去色能隙圖:(a)前驅物一號;(b)前驅物二號;(c)前驅物三號………………………………………80 圖4-44 氧化鎢薄膜350℃氧氣氛退火之著-去色能隙圖:(a)前驅物一號;(b)前驅物二號;(c)前驅物三號……………………………………..81 圖4-45 氧化鎢薄膜於不同退火條件之能隙比較圖:(a)初鍍(去色);(b)著色………………………………...…………………………………82 圖4-46 氧化鎢薄膜未退火循環伏安圖(CV):(a)前驅物一號;(b) 前驅物二號;(c) 前驅物三號……………………………………….………84 圖4-47 氧化鎢薄膜大氣350℃退火循環伏安圖(CV):(a)前驅物一號;(b) 前驅物二號;(c) 前驅物三號…………………….…………………85 圖4-48 氧化鎢薄膜真空350℃退火循環伏安圖(CV):(a)前驅物一號;(b) 前驅物二號;(c) 前驅物三號…………….…………………………86 圖4-49 前驅物三號氧氣氛350℃退火循環伏安圖(CV):(a)前驅物一號;(b) 前驅物二號;(c) 前驅物三號…………………………………87 圖4-50 氧化鎢薄膜未退火階梯電位響應圖:(a)前驅物一號;(b)前驅物二號;(c)前驅物三號………………………………………...………..89 圖4-51 氧化鎢薄膜大氣350℃退火階梯電位響應圖:(a)前驅物一號;(b)前驅物二號;(c)前驅物三號………………………………………..90 圖4-52 氧化鎢薄膜真空350℃退火階梯電位響應圖:(a)前驅物一號;(b)前驅物二號;(c)前驅物三號………………………………………..91 圖4-53 氧化鎢薄膜氧氣氛350℃退火階梯電位響應圖:(a)前驅物一號;(b)前驅物二號;(c)前驅物三號……………………………...…………92 圖4-54 氧化鎢薄膜於不同退火條件下之響應時間比較圖:(a)著色;(b)去色………………..……………………………………………….93

    1. M. Santamouris, in: J. Gordon (Ed.), Solar Energy: The State of the Art, James & James Science Publishers, London, UK, 2001, pp. 1.
    2. C.F. Reinhart, in: The Future for Renewable Energy 2, James & James Science Publishers, London, UK, 2002, pp. 79 – 114.
    3. 呂潔夫、李俊毅(民89)。液晶材料在光學元件上之應用,化工技術第八卷第六期,頁164-172。
    4. http://www.inforse.org/europe/dieret/Solar/solar.html
    5. P.H. Lissberger, J.M. Pearson, The performance and structural properties of multiplayer optical filters, Thin Solid Films, 34 (1976) pp. 349 – 355.
    6. C.G. Granqvist, Handbook of Inorganic Electrochromic Material, Elsevier, Amsterdam, 1995.
    7. E.S. Lee, D.L. DiBartolomeo, S.E. Selkowitz, Daylighting control performance of a thin-film ceramic electrochromic window: Field study results, Energy and Buildings, 38 (2006) pp. 30 – 44.
    8. Nilgun Ozer, Carl M. Lampert, Electrochromic characterization of sol-gel deposited coatings, Solar Energy Materials & Solar Cells, 54 (1998) pp. 147 – 156.
    9. J. livage, D. Ganguli, Sol-gel electrochromic coatings and devices: A review, Solar Energy Materials & Solar Cell, 68 (2001) pp. 365 – 381.
    10. S.A. Agnihotry, Rashmi, R. Ramchandran, S. Chandra, Pre-existence of HxWO3 in e-beam deposited WO3 films, Solar Energy Materials & Solar Cells, 36 (1995) pp. 289 – 294.
    11. J.L. Solisa, A. Hoel, V. Lantto, C.G. Granqvist, Infrared spectroscopy study of electrochromic nanocrystalline tungsten oxide films made by reactive advanced gas deposition, J. Appl. Phys., 89 (2001) pp. 2727 – 2732.
    12. C. Trimble, M. DeVries, J.S. Hale1, D.W. Thompson, T.E. Tiwald, J.A. Woollam, Infrared emittance modulation devices using electrochromic crystalline tungsten oxide, polymer conductor, and nickel oxide, Thin Solid Films, 355&356 (1999) pp. 26 – 34.
    13. A. Subrahmanyam, A. Karuppasamy, Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin film, Solar Energy Materials & Solar Cells, 91 (2007) pp. 266 – 274.
    14. D. Gogova, A. Iossifova, T. Ivanova, Zl. Dimitrova, K. Gesheva, Electrochromic behavior in CVD grown tungsten oxide films, Journal of Crystal Growth, 198-199 (1999) pp. 1230 – 1234.
    15. A.K. Srivastava, M. Deepa, S. Singh, R. Kishore, S.A. Agnihotry, Microstructural and electrochromic characteristics of electrodeposited and annealed WO3 films, Solid State Ionics, 176 (2005) pp. 1161 – 1168.
    16. J. Livage, G. Guzman, Aqueous precursor for electrochromic tungsten oxide hydrates, Solid State Ionics, 84 (1996) pp. 205 – 211.
    17. P.K. Biswas, N.C. Pramanik, M.K. Mahapatra, D. Ganguli, J. Livage, Optical and electrochromic properties of sol–gel WO3 films on conducting glass, Materials Letters, 57 (2003) pp. 4429 – 4432..
    18. S.A. Agnihotry, N. Sharma and M. Deppa, Ion Exchange Derived Precursor Materials for Deposition of WO3 Electrochromic Films: Spectroscopic Investigations, Journal of Sol-Gel Science and Technology, 24 (2002) pp. 265 – 270.
    19. R. Solarska, B.D. Alexander, J. Augustynski, Electrochromic and structural characteristics of mesoporous WO3 films prepared by a sol-gel method, Journal of Solid State Electrochem, 8 (2004) pp. 748 – 756.
    20. W. Cheng, E. Baudrin, B. Dunna, J.I. Zink, Synthesis and electrochromic properties of mesoporous tungsten oxide, J. Mater. Chem., 11 (2001) pp. 92 – 97.
    21. A. Cremonesi, D. Bersani, P.P. Lottici, Y. Djaoued, P.V. Ashrit, WO3 thin films by sol-gel for electrochromic applications, Journal of Non-Crystalline Solids, 345&346 (2004) pp. 500 – 504.
    22. I. Karakurt, J. Boneberg, P. Leiderer, Electrochromic switching Of WO3 nanostructures and thin films, Appl. Phys. A, 83 (2006) pp. 1 – 3.
    23. P. Judeinstein and J. Livage, Sol-gel synthesis of WO3 thin films, J. Mater. Chem., 1(4) (1991) pp. 621 – 627.
    24. O. Pyper1, R. Schollhorn1, J.J.T.M. Donkers, L.H.M. Krings, Nanocrystalline structure of WO3 thin films prepared by the sol-gel technique, Materials Research Bulletin, 33(7) (1998) pp. 1095 – 1101.
    25. M .G. Hutchins, N. A. Kamel, N. E. Kadry, A. A. Ramadan, K. Abdel-Hady, Preparation and Properties of Electrochemically Deposited Tungsten Oxide Films, Phys. stat. sol. (a), 175 (1999) pp. 991 – 1002.
    26. B. Munro, S. Kramer, P. Zapp, H. Krug, Characterization of electrochromic WO3-Layers prepared by sol-gel nanotechnology, Journal of Sol-Gel Science and Technology, 13 (1998) pp. 673 – 678.
    27. C.O. Avellaneda, L.O.S. Bulhoes, Intercalation in WO3 and WO3:Li films, Solid State Ionics, 165 (2003) pp. 59 – 64.
    28. A. Patra, K. Auddy, D. Ganguli, J. Livage, P.K. Biswas, Sol–gel electrochromic WO3 coatings on glass, Materials Letters, 58 (2004) pp. 1059 – 1063.
    29. Z.A.E.P. Vroon and C.I.M.A. Spee, Sol-gel coating on large area glass sheets for electrochromic device, Journal of Non-Crystalline Solids, 218 (1997) pp. 189 – 195.
    30. K.D. Lee, Preparation and electrochromic properties of WO3 coating deposited by the sol-gel method, Solar Energy Materials & Solar Cells, 57 (1999) pp. 21 – 30.
    31. L.H.M. Krings, W. Talen, Wet chemical preparation and characterization of electrochromic WO3, Solar Energy Materials & Solar Cells, 54 (1998) pp. 27 – 37.
    32. T. Nishide, F. Mizukami, Crystal structures and optical properties of tungsten oxide films prepared by a complexing-agent-assisted sol-gel process, Thin Solid Films, 259 (1995) pp. 212 – 217.
    33. M. Deepa, D. P. Singh, S. M. Shivaprasad, S. A. Agnihotry, A comparison of electrochromic properties of sol–gel derived amorphous and nanocrystalline tungsten oxide films, Current Applied Physics, 7 (2007) pp. 220 – 229.
    34. C.G. Granqvist , Electrochromic tungsten oxide films Review of progress 1993–1998, Solar Energy Materials & Solar Cells, 60 (2000) pp. 201 – 262.
    35. B.W. Fanghnan, R.S. Crandall and P.M. Heyman, Electrochromism in WO3 amorphous films, RCA Review, 36 (1975) pp. 177 – 197.
    36. S.H. Lee, H. M. Cheong, J. G. Zhang, A. Mascarenhas, D. K. Benson, S. K. Deb, Electrochromic mechanism in a-WO3-y thin films, Appl. Phys. Letters, 74 (2) (1999) pp. 242 – 244.
    37. S.K. Deb, Optical and photoelectric properties and color centers in thin films of tungsten oxide, The Philosophical Magazine, 27 (1973) pp. 801 – 822.
    38. O. F. Schirmer, V. Wittwer, G. Baur and G. Braudt, Dependence of WO3 electrochromic absorption on crystallinity, J. Electrochem. Soc., 124 (1977) pp. 749 – 753.
    39. 吳炳佑、蔣孝澈(民85年)。溶凝膠製備薄膜及其應用,材料科學,第28期,第三卷,頁169 – 181。
    40. 陳慧英、黃定加、朱泰億(民87年)。溶膠凝膠法在薄膜製備上之應用。化工技術,第七卷第十一期,頁152 – 167。
    41. N. Sharma, M. Deepa, N. Sharma, P. Varshney, S.A. Agnihotry, FTIR and absorption edge studies on tungsten oxide based precursor materials synthesized by sol–gel technique, Journal of Non-Crystalline Solids, 306 (2002) pp. 129 – 137.
    42. M. Deepa, N. Sharma, P. Varshney, S.A. Agnihotry, FTIR investigations of solid precursor materials for sol-gel deposition of WO3 based electrochromic films, Journal of Materials Science, 35 (2000) pp. 5313 – 5318.
    43. M. Deepa, M. Kar, S.A. Agnihotry, Electrodeposited tungsten oxide films: annealing effects on structure and electrochromic performance, Thin Solid Films, 468 (2004) pp. 32 – 42.
    44. H. Yang, F. Shang, L. Gao, H. Han, Structure, electrochromic and optical properties of WO3 film prepared by dip coating-pyrolysis, Applied Surface Science, 253 (2007) pp. 5553 – 5557.
    45. A. Azens, E. Avendano, J. Backholm, L. Berggren, G. Gustavsson, R. Karmhag, G.A. Niklasson, A. Roos, C.G. Granqvist, Flexible foils with electrochromic coatings: science, technology and applications, Material Science and Enginnering B, 119 (2005) pp. 214 – 223.
    46. M. G. Hutchins, N.A. Kamel and K. Abdel-Hady, Effect of oxygen content on the electrochromic properties of sputtered tungsten oxide films with Li+ insertion, Vacuum, 51(3) (1998) pp. 433 – 439.
    47. R. Sivakumar, M. Jayachandran, C. Sanjeeviraja, Studies on the effect of substrate temperature on (VI–VI) textured tungsten oxide (WO3) thin films on glass, SnO2:F substrates by PVD:EBE technique for electrochromic devices, Materials Chemistry and Physics, 87 (2004) pp. 439 – 445.
    48. T. Kubo, Y. Nishikitani, Deposition Temperature Dependence of Optical Gap and Coloration Efficiency Spectrum in Electrochromic Tungsten Oxide Films, J. Electrochem. Soc., 145(5) (1998) pp. 1729 – 1734.

    下載圖示
    QR CODE