研究生: |
李柏緯 Lee, Po-Wei |
---|---|
論文名稱: |
放電加工參數影響鋁合金6061加工特性之研究 The Study Of Electric Discharging Machining Parameters Influencing The Machining Characteristics Of Aluminum Alloy 6061 |
指導教授: |
郭金國
Kuo, Chin-Guo |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 58 |
中文關鍵詞: | 放電加工 、疲勞壽命 、田口實驗法 、品質監控 、電漿蝕刻 |
英文關鍵詞: | die sinking electric discharge machining, fatigue life, taguchi methodx, quality control, plasma etching |
DOI URL: | https://doi.org/10.6345/NTNU202204922 |
論文種類: | 學術論文 |
相關次數: | 點閱:160 下載:25 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討放電加工參數影響鋁合金6061加工特性之研究。以紅銅為電極,固定脈衝時間、休止時間、排渣高度、放電電壓,改變放電電流8 A~15 A,探討放電加工特性包括:電極消耗率、材料移除率、表面粗糙度、變質層厚度、疲勞壽命。為了監控放電加工過程品質處於控制狀態,本研究將最佳放電加工參數重複多次實驗 (35次),觀察鋁合金 (6061)放電加工特性,配合品質管制圖,達到監控預測的效果。
研究結果顯示,較高的放電電流 (15 A),有較大的材料移除率,電極消耗率,表面粗糙度及工件表面硬度。此外、增加放電電流,變質層厚度亦隨著增加(由10.31 μm 增加到19.38 μm),因為變質層硬度遠高於母材,故工件疲勞壽命隨之提升。
經多次 (35次)重複放電加工,透過品質管制圖(Shewhart control chart)監控,顯示該放電加工特性始終保持在穩定可監控狀態。
此外,應用電漿蝕刻放電加工件表面,進一步提升放電加工件疲勞壽命。配合田口實驗設計L9 (33),探討電漿蝕刻參數:蝕刻功率 (W)、氧氣流率 (sccm)、蝕刻時間 (min)對放電加工件表面粗糙度、水滴接觸角、疲勞壽命的影響。以掃描式顯微鏡(SEM),觀察放電加工件表面形貌及變質層。研究結果顯示,放電加工件經電漿蝕刻,可有效清除工件表面殘渣及微細裂紋,降低微裂紋對工件的不良影響,有效提升放電加工件疲勞壽命約25%。
The study tested electric discharging machining parameters influence the machining characteristics of aluminum alloy 6061. With copper as the electrode, Fixed pulse time, Slag height, discharge voltage, and change discharge current 8 A~15A. To investigate EDM features including electrode consumption rate, material removal rate, surface roughness, recastlayer and fatigue life. In order to monitor the quality of the discharge process in control, the optimal discharge machining parameters repeated experiments (35 times) , observed an aluminum alloy (6061) discharge machining characteristics, with quality control charts, to monitor the predicted effect.
The results showed a high discharge current (15A) with a larger material removal rate, electrode consumption rate, surface roughness and surface hardness. In addition, increasing the discharge current, recastlayer thickness also increases (from the 10.31 μm to 19.38 μm), due to affected layer hardness is much higher than the base material, so the fatigue life rise with the workpiece.
After repeated (35 times) discharge machining experiments, through quality control charts (Shewhart control chart) monitor the discharge machining characteristics remain in a stable state.
Moreover, the application of plasma etching the surface discharge machining, in further, enhance fatigue life of electrical discharge machining parts.,Investigated plasma etch parameters: etching power (W), oxygen flow rate (sccm), etching time (min) for the influence of electrical discharge machining surface roughness, water contact angle and fatigue life. With scanning electron microscope (SEM), observe the surface morphology and recastlayer.
The experimental result shows that the EDMed workpiece by plasma etching, remove surface residue and micro-cracks effectively, reducing the adverse effects of micro-cracks, the fatigue life of EDMed workpiece can be improved.
[1] 林耀乾,“鎢銅複合材料放電加工特性與多重品質之研究”,國防大學中正理工學院兵器系統工程研究所碩士論文,2004。
[2] 洪榮洲,“微放電複合製程之微型工具製作技術及其精微加工研究”, 國立中央大學機械工程研究所博士論文,桃園,2006。
[3] 江瑞軒,“雕模放電加工鑽石修整器製程技術之開發研究”,國立台灣大學機械工程學研究所,2008。“
[4] 呂學傑,“以加工參數抑制裂紋生成法改善放電加工表面之疲勞壽命”,南台科技大學機械工程研究所碩士論文,2007。
[5] 劉全,“EDM 應變規鑽孔法測量殘留應力之最佳化流程設計”,國立成功大學機械工程研究所博士論文, 2008。
[6] ASM International, Titanium Alloys, Materials Properties Handbook, Materials Park, OH:ASM International, 1994.
[7] J. Y. Kao, C. C. Tsao, S. S. Wang, C. Y. Hsu, “Optimization of the EDM parameters on machining Ti-6Al-4V with multiple quality characteristics,” International Journal of Advanced Manufacturing Technology 47, pp. 395-402, 2010.
[8] 賴耿陽,金屬理論與應用,復漢出版社, 1980。
[9] 鐘昆原,“7005擠製鋁合金的拉伸與疲勞性質研究”,國立中央大學機械工程研究所碩士論文,2002。
[10] Warda, B., & Chudzik, A. “Fatigue life prediction of the radial roller bearing with the correction of roller generators,” International Journal of Mechanical Sciences, 89, pp. 299-310, 2014.
[11] Bernasconi, A., Cosmi, F., & Taylor, D. “Analisys of the fatigue properties of different specimens of a 10% by weight short glass fibre reinforced polyamide 6.6, ” Polymer Testing, 40, pp. 149-155, 2014.
[12] Zhu, Y., Li, X., Gao, R., & Wang, C. “Low-cycle fatigue failure behavior and life evaluation of lead-free solder joint under high temperature,” Microelectronics Reliability, 54(12), 2922-2928, 2014.
[13] Muthu, J. “Fatigue life of 7075-T6 aluminium alloy under fretting condition,” Theoretical and Applied Fracture Mechanics, 74, pp. 200-208, 2014.
[14] Chen, J., Yun, Q., Gao, W., Bai, Y., Nie, C., & Zhao, S. “Improved ferroelectric and fatigue properties in Zr doped Bi 4 Ti 3 O 12 thin films,” Materials Letters, 136, pp. 11-14, 2014.
[15] Zhao, X., Liu, Y., Liu, Y., & Gao, Y. “Research on fatigue behavior and residual stress of large-scale cruciform welding joint with groove,” Materials & Design, 63, pp.593-599, 2014.
[16] Chen, J., & Xia, Z. “A fatigue life prediction method for coke drum base, weld, and HAZ materials from tensile properties,” Materials & Design, 63, pp. 575-583, 2014.
[17] Skordaris, G. “Fatigue strength of diamond coating-substrate interface quantified by a dynamic simulation of the inclined impact test,” Journal of Materials Engineering and Performance, 23(10), 3497-3504, 2014.