研究生: |
洪琪鈺 Hung, Chi-Yu |
---|---|
論文名稱: |
多線式精微線切割放電加工技術開發 Development of a micro multi-wire electric discharge machining technology |
指導教授: |
陳順同
Chen, Shun-Tong |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 119 |
中文關鍵詞: | 多線式精微線切割放電加工技術 、偏移式加工法 、精微陣列探針 |
英文關鍵詞: | micro multi-wire electric discharge machining, offset machining, micro probe array |
論文種類: | 學術論文 |
相關次數: | 點閱:104 下載:6 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在針對高細長比微細結構,開發一種「多線式精微線切割放電加工技術(Micro multi-wire electric discharge machining)」,以獲致高效率精微線切割加工。為開發具高深寬線切割放電加工的方法,本研究提出以陣列微細線電極配合高頻振動輔助(High-frequency vibration) 及偏置切割法(Offset cutting),對微細碳化鎢棒材,進行放電切割加工。研究之初,先行開發一組多線式精微線切割加工機構,並設計陣列式細線張力控制的方法。為避免多線電極於加工過程中,發生晃動行為,實驗設計微細線的陣列導槽(Micro guide array),以固定多線電極彼此間距。系列實驗後,證實本研究所提多線式線切割放電加工,能以Ø50 µm的陣列細線,加工出8×8陣列微結構的碳化鎢探針(Micro probe array),每支探針尺寸20×20×500 μm,細長比達25:1;而以1 kHz的高頻振動(High-frequency vibration)輔助,著實能幫助陣列微細銅線產生極小振動,放電殘渣(Discharge debris)得以順利排除,並減少二次放電(Secondary discharge)、異常放電( Abnormal discharge),以及短路(Short circuit)發生的機會。實驗結果也顯示,以雙線電極配合振動輔助,進行探針加工,其所耗時間比單線電極在振動輔助模式下所耗時間,可減少約65-70 %,多線電極切割的工件表面粗糙度(Ra:0.86 μm)亦比單線電極(Ra:1.0 μm)切割的更好,證實多線電極的放電,具火花分散(Spark dispersing)效果,可避免過渡放電集中而造成表面粗糙度不佳的問題。本研究證實多線式精微線切割放電加工技術,除了能有效提升線切割放電加工的效能外,亦能提升工件表面粗糙度,此研究成果能貢獻於精微加工產業。
This study presents the development of micro multi-wire electric discharge machining for efficiently machining the high-aspect-ratio microstructure. To achieve high-performance of machining for microstructure, a multi-wire EDM mechanism that performs arrayed micro wire cutting with high-frequency vibration and an offset machining approach are proposed in this study. The tensions of the multi-wire electrodes with 50µm in diameter are controlled by magnetic repulsive force to steady the wires during machining. A vibrating absorber and a micro guide notch array which exactly guides the multi-wire electrodes in a constant pitch are designed to suppress wires vibration. Experimental results demonstrate that the proposed approaches can fabricate microstructure with 8×8 micro probe array and 20×20×1000µm squared pillars by using the micro wire array electrodes of 50μm diameter. The microstructure array of an aspect ratio more than 25 are satisfactorily and precisely fabricated. By applying the high-frequency assisted vibration of 1 KHz, discharge debris can be removed swiftly from the wire and reduce the frequencies of secondary discharge, abnormal discharge and short circuit. On the other hand, comparing with the single wire EDM with vibration mode, the machining time can save up to 65-70% when using twin-wire EDM with vibration mode. Moreover, the surface roughness of the machined pillars by using the multi-wire cutting is better than that of single wire cutting, indicates that an effect of spark dispersing can be achieved to avoid discharge crowding effect. It is confirmed that the proposed approach could really realize the high performance of machining besides improving the surface roughness. The developed micro multi-wire electric discharge machining is effective, and should be very useful in the manufacture of the high-aspect-ratio micro probe array.
1. Gordon Moore, Progress in Digital Integrated Electronics, IEEE, IEDM Tech Digest, pp. 11-13, 1975.
2. F. Wang, X. Li, R. Cheng, K. Jiang, and S. Feng, “Silicon cantilever arrays with by-pass metal through-silicon-via (TSV) tips for micromachined IC testing probe cards,” Microelectronic engineering vol.86, pp. 2211-2216, 2009.
3. C. Y. Lo, Y. T. Hsing, L. M. Denq, and C. W. Wu, “SOC Test architecture and method for 3D-ICs,” IEEE Trans. on computer-aided design of integrated circuits and systems, vol. 29, no.10, pp. 1645-1649, October 2010.
4. B. Noia, S. K. Goel, K. Chakrabarty, E. J. Marinissen, and J. Verbree, ”Test-architecture optimization for TSV-Based 3D stacked ICs, ” Test symposium (ETS), 2010, 15th IEEE European, Praha, pp. 24-29, 2010
5. B. Noia, K. Chakrabarty, S. K. Goel, E. J. Marinissen, and J. Verbree, ” Test-architecture optimization and test scheduling for TSV-Based 3D stacked ICs,” IEEE Trans. on computer-aided design of integrated circuits and systems, vol. 30, no.11, pp. 1705-1718, Novermber 2011.
6. “An alternative approach to circuit design and assembly for high-speed interconnections,” http://www.soccentral.com/results.asp?EntryID=10778
7. “3D IC Standards – First, Let’s Define Our Terms,” http://community.cadence.com/
8. 李淑蓮,3D IC的機會與挑戰,北美智權報,http://www.naipo.com/,2013
9. 唐和明,晶片封裝產業的文藝復興時代即將來臨,半導體產業推動辦公室專刊,,經濟部工業局,no.30,pp. 17。
10. T. Masuzawa, “State of the art of micromachining,” CIRP-Ann-Manufacturing Technology, vol. 49, pp. 473-488, 2000.
11. T. Masuzawa, “Micro-EDM,” Proceedings of the 13th international symposium for electromachining, pp. 3-19, 2001.
12. M. Muro, Y. Ikemoto, T. Gawa, T. Masaki, and Y. Furusawa, “Micro-hole machining by vibration-assisted EDM,” Proceedings of the annual meeting of Japanese society of electrical machining engineers, pp. 19-20, 1994.
13. T. Endo, T. Tsujimoto, and K. Mitsui, “Study of vibration-assisted micro-EDM—the effect of vibration on machining time and stability of discharge,” Precision Engineering, vol. 32, pp. 269-277, 2008.
14. Y. C. Lin, B. H. Yan, and Y. S. Chang, “Machining characteristics of titanium alloy (Ti-6Al-4V) using a combination process of EDM with USM,” Journal of Materials Processing Technology, vol. 104, pp. 171-177, 2000.
15. Y. C. Lin, and H. S. Lee, “Machining characteristics of magnetic force-assisted EDM,” International journal of machine tools & manufacture, vol. 48, pp. 1179-1186, 2008.
16. G. S. Prihandana, M. Mahardika, M. Hamdi, Y. S. Wong, and K. Mitsui, “Effect of micro-powder suspension and ultrasonic vibration of dielectric fluid in micro–EDM processes—Taguchi approach,” International journal of machine tools & manufacture, pp. 1035-1041, 2009.
17. Y. Jiang, W. Zhao, X. Xi, X. Kang, and L. Gu, “Vibration assisted EDM of small-hole using voice coil motor,” Procedia CIRP, vol. 1, pp. 645-650, 2012.
18. Y. Sakai, A. Goto, K. Nakamura, K. Hattori, K. Kobayashi, “Improvement of Machining Accuracy in Wire Electrical Discharge Machining,” Proceedings of 15th International Symposium on Electromachining, pp. 171-174, 2007.
19. F. Han, S. Wachi, M. Kunieda, “Improvement of Machining Characteristics of Micro-EDM using Transistor Type Isopulse Generator and Servo Feed Control,” Precision Engineering, vol. 28, pp. 378-385, 2004.
20. M. T. Yan, Y. T. Liu, “Design, analysis and experimental study of a high-frequency power supply for finish cut of wire-EDM,” International Journal of Machine Tools and Manufacture, vol. 49, pp. 793-796, 2009.
21. Y. Jiang, W. Zhao, X. Xi, “A study on pulse control for small-hole electrical discharge machining,” Journal of Materials Processing Technology, vol. 212, pp. 1463-1471, 2012.
22. K. E. Jones, P. K. Campbell, and R. A. Normann, “A Glass/Silicon Composite Intracortical Electrode Array,” Annals of Biomedical Engineering, vol. 20, pp. 423-437, 1992.
23. T. Fofonoff, S. Martel, C. Wiseman, R. Dye, I. Hunter, N. Hatsopoulos, and J. Donoghue, “A highly flexible manufacturing technique for microelectrode array fabrication,” Proceedings of the second joint EMBS/BMES conference, pp. 23-26, 2002.
24. W. C. Ng, H. L. Seet, K. S. Lee, N. Ning, W. X. Tai, M. Sutedja, J. Y. H. Fuh, and X. P. Li, “Micro-spike EEG electrode and the vacuum-casting technology for mass production,” Journal of materials processing technology, vol. 209, pp. 4434-4438, 2009.
25. D. Rakwal, S. Heamawatanachai, P. Tathireddy, F. Solzbacher, and E. Bamberg, “Fabrication of compliant high aspect ratio silicon microelectrode arrays using micro-wire electrical discharge machining,” Microsyst technol, vol. 15, pp. 789-797, 2009.
26. W. Zeng, Z. Wang, M. Weng, and Y. Liu, “Micro-electrode array and micro-hole array fabrication by combined micro-WEDM and EMMD,” Digest journal of nanomaterials and biostructures, vol. 7, no.2, pp. 755-761, 2012.
27. 楊士緯, ”高頻振動輔助微線切割放電加工技術開發與高密度超高細長比精微陣列探針製作研究”,國立臺灣師範大學機電工程學研究所,碩士論文,2013。
28. Internet of Things Portfolio, http://www.semico.com/
29. MEMS Market to Top $22 billion by 2018, http://www.eetimes.com.tw
30. Fine pitch array probe structure with reverse wiring discharge machining process, TSMC, vol. 2, 2011.
31. S. Ishikawa, Y. Uehara, Y. Watanabe, K. Katahira, W. Lin, H. Ohmori, N. Mitsuishi, and Y. Yamamoto, “Development of micro tool by ELID micro fabrication system: 3rd report: High efficiency machining of micro-tool,” Journal of the Japan Society for Abrasive Technology, vol. 49, no. 3, pp. 157-162, 2005.
32. Y. T. Chen, Y. S. Liao and T. T. Chen, “Fabrication of arrayed micro needles by laser LIGA process,” Proceedings of the 3rd Int. Conf. on Leading Edge Manufacturing in 21st Century, Nagoya, Japan, pp. 285-290, 2005.
33. 莊正賢,”針錐狀與圓柱狀微電極電解加工之研發”,國立雲林科技大學機械工程學系,碩士論文,2003。
34. T. Masuzawa, “Fundamentals of micro-EDM technology are summarized and the state of the art of the technology is overviewed,” Proceedings of the 13th international symposium for electro-machining ISEM XIII, vol. 1.1, pp. 3-15, 2001.
35. C. Sommer, Non-traditional machining handbook, Advance Publishing, Inc., pp. 117-124, 2000.
36. 機械技術雜誌編輯部,二十一世紀的顯學微機電系統(四)-微放電精密加工,機械技術雜誌,pp. 220-222, 2000。
37. 董光雄,放電加工,復文書局出版社,pp. 74-75,1988。
38. S. T. Chen, H. Y. Yang, “Study of an ultrafine w-EDM technique,” Journal of micromechanics and microengineering, J. Micromech. Microeng.18 055005, 2009.
39. 齋藤長男,放電加工のしくみと100%活用法,三菱電機(株) ,pp. 40-67,1979。
40. E. J. Weller, “Nontraditional Machining Processes,” Society of manufacturing engineers, pp. 162-170, 1984.
41. S. T. Chen, C. H. Chen, “A novel powersource for high-precision, highly efficient micro w-EDM,” J. Micromech. Microeng.25 075027, 2015.
42. 台灣大學電機系,壓電效應-歷史與應用,1982,http://mail.tajen.edu.tw/
43. Piezo Nano Positioning, The world of micro- and nano positioning, 2005.
44. Low voltage co-fired multilayer stacks, rings and chips for actuation, http://www.piezomechanik.com/en/introduction/
45. First Steps towards Piezoaction, Piezomechanik GmbH,http://www.piezomechanik.com/
46. 慶鴻機電工業股份有限公司,CNC線切割放電加工機,線切割機保養手冊,B1 edition, 2008
47. 台中精機,立式綜合加工機,http://www.or.com.tw/
48. 黃瑋平,”低成本高剛性微型工具機開發與高精度陣列光學微模具製作研究”,國立臺灣師範大學機電科技學系,碩士論文, 2011。
49. 微型直流馬達, FAULHABER, http://www.faulhaber.com/
50. 壓電陶瓷材料,Piezomechanik GmbH,http://www.piezomechanik.com/
51. 函數波信號產生器,茂迪股份有限公司,http://www.motechsolar.com/
52. 功率放大器,Piezo Master,http://piezomaster.com/
53. 工具顯微鏡, 漢磊股份有限公司, http://www.aixon.com.tw/
54. 掃描式電子顯微鏡, JEOL- Scanning Electron Microscopes, http://www.jeol.com/Default.aspx?tabid=36
55. 3D雷射共軛焦顯微鏡, OLYMPUS, http://www.olympus-ims.com/en/metrology/ols4000/
56. 混合訊號示波器, 太克科技, http://www1.tek.com/zh-tw/
57. G. Rizzoni, “Principle and application of electrical engineering,” The McGraw-Hill Companies, Inc, 2nd edition, 1996.
58. 黃銅電極(250µm), TECHNOS株式會社, http://www.bedra.com/
59. 黃銅電極(50µm), TECHNOS株式會社, http://www.bedra.com/
60. H. J. Scussel, Friction and wear of cemented carbides, ASM handbook, Vol.18, ASM Int., pp.795, 1992.
61. 黃錦鐘編譯,最新放電加工技術,全華圖書公司,1987。
62. J. Itoh, Y. Tohma, S. Kanemaru and K. Shimizu, “Fabrication of an ultra sharp and high-aspect-ratio microprobe with a silicon-on-insulator wafer for scanning force microscopy,” J. Vac. Sci. Technol. B. 13 (2), pp. 331-334, 1995.
63. S. Takeuchi, T. Suzuki, K. Mabuchi, and H. Fujita, “3D flexible multichannel neural probe array,” Journal of micromechanics and microengineering, vol. 14, pp. 104-107, 2004.
64. P. Garrou, “MCNC Research & development institute,” Research triangle park, N.C., 2005.