研究生: |
趙家祥 Chia-Hsiang Chao |
---|---|
論文名稱: |
應用於X頻帶9.75/10.6 GHz頻率合成器之設計與實現 Design and Implementation of X-band 9.75/10.6GHz Frequency Synthesizer |
指導教授: |
蔡政翰
Tsai, Jen-Han |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 129 |
中文關鍵詞: | X頻段 、頻率合成器 、交叉耦合對電壓控制振盪器 、多模除頻器 、9.75/10.6GHz LNB |
英文關鍵詞: | X-band, Frequency Synthesizer, Cross-coupled pair VCO, Multi-Modulus Divider, 9.75/10.6GHz LNB |
論文種類: | 學術論文 |
相關次數: | 點閱:420 下載:18 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在數位傳播衛星(DBS)的規範下,操作在Ku頻帶10.7~12.75GHz的低雜訊模塊降頻器是衛星電視訊號接收鏈中一個重要的部份。因為低雜訊模塊降頻器必需將Ku-Band的RF訊號降頻至L-Band的IF訊號(0.95~2.15GHz)。因此在低雜訊模塊降頻器的設計上,需要一個X頻帶頻率合成器來提供9.75GHz及10.6GHz的振盪源訊號。本論文使用了TSMC CMOS 0.18-µm製程實現了X頻段9.75/10.6GHz頻率合成器。
本論文依序實現了多模除頻器、X頻帶頻率合成器前端電路以及X頻帶9.75/10.6GHz頻率合成器,分別在第三章、第四章及第五章呈現。在第三章實現出了一個七位元多模除頻器,其除數從128~255,在直流偏壓1.5V下最高可操作在3.3GHz,功率消耗為5.85mW。在第四章實現了X頻帶頻率合成器前端電路,包含電壓控制振盪器及除四預除頻器電路兩個部份。電壓控制振盪器部份採用交叉耦合對的方式,同時利用一個開關電路來實現9.75/10.6 GHz頻段切換的功能。其功率消耗為10.5mW。高頻頻段相位雜訊在載波偏移1MHz處-102.95dBc/Hz;低頻頻段相位雜訊在載波偏移1MHz處為-92.199dBc/Hz。預除頻電路部分採用電流模式邏輯式的除頻器架構。同時,刪除了CML的尾電流部分來增加速度。其功率消耗為14.5mW。在第五章實現了X頻帶9.75/10.6GHz頻率合成器。輸出頻率為9.75GHz時,相位雜訊在載波偏移100KHz處為-66.11 dBc/Hz;在載波偏移1MHz處為-89.85 dBc/Hz。輸出頻率為10.6GHz時,相位雜訊在載波偏移100KHz處為-66.77 dBC/Hz;在載波偏移1MHz處為-90.55 dBC/Hz。其功率消耗為34.5mW。
Under Digital Broadcast Satellite (DBS) regulations, Low Noise Block (LNB) down-converter operated in Ku-band 10.7~12.75 GHz is an important part of the satellite- TV reception chain. Because LNB down-converter is in charge of converting the Ku-band RF signal down to L-band IF signal (0.95~2.15GHz), the X-band frequency synthesizers is necessary block in LNB system design to provide 9.75GHz and 10.6GHz local oscillator (LO). In this thesis, a X-band 9.75/10.6 GHz Frequency Synthesizer is presented by using TSMC CMOS 0.18-µm process.
This thesis implemented 7-bits Multi-Modulus Divider, X-band synthesizer frontend circuit and X-band 9.75/10.6 GHz frequency synthesizer in chapter 3, chapter 4 and chapter 5, respectively. In chapter 3, 7-bits Multi-Modulus Divider is presented, which divisor are 128~255 and highest operating frequency is 3.3 GHz in 1.5V.Multi-Modulus divider power consumption is 5.85 mW. In chapter 4, X-band synthesizer frontend circuit, included VCO and ÷4 prescalar, is presented. The VCO employs LC-tank cross-coupled pair architecture. In order to switch frequencies between the 9.75 GHz and 10.6 GHz, VCO specially use a switch circuit. VCO power consumption is 10.5 mW. When VCO in high band, phase noise is -102.95 dBc/Hz@1MHz. In low band, phase noise is -92.19 dBc/Hz@1MHz. The ÷4 prescalar circuit employs CML architecture. For promoting the speed, tail-current of CML Divider are removed.CML power consumption is 14.5 mW. In chapter 5, X-band 9.75/10.6 GHz frequency Synthesizer is presented. When output frequency in 9.75 GHz, phase noise are -66.11 dBc/Hz@100KHz and -89.85 dBc/Hz@1MHz. When output frequency in 10.6 GHz, phase noise are -66.77 dBc/Hz@100KHz and -90.55 dBc/Hz@1MHz. X-band Frequency Synthesizer power consumption is 34.5mW.
[1] 虞孝成,唐震寰,杭學銘,張成軍, 衛星廣播電視工程技術與規範, 交通部電信總局,民國87年, http://ir.lib.nctu.edu.tw/handle/987654321/12933。
[2] S. Kim, K. Lee, Y. Moon, D. K. Jeong, Y. Choi and H. K. Lim, “A 960-Mb/s/pin interface for skew-tolerant bus using low jitter PLL,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 691-700, May 1997
[3] G. Wegmann, E. A. Vittoz, and F. Rahali, “Charge injection in analog MOS switches,” IEEE J. Solid-State Circuits, vol. 22, no. 6, pp. 1091-1097, Dec. 1987.
[4] Bing J. Sheu and Chenming Hu, “Switch-induced error voltage on a switched capacitor,” IEEE J. Solid-State Circuits, vol. 19, no. 6, pp. 519-525, Aug. 1984.
[5] Woogeun Rhee, “Design of high performance CMOS charge pump in phase locked loop,” in Proc. IEEE Int. Symp. Circuits and Systems, 1999, pp. 545-548.
[6] Mark Van Paemel, “Analysis of a charge-pump PLL: A new model,” IEEE Trans. Commun., vol. 42, no.7, pp. 2490-2498, July 1994.
[7] F. M. Gardner, “Charge-pump phase-lock loops,“ IEEE Trans. Commun., vol. 28, no. 11, pp. 1849-1858, Nov. 1980.
[8] William O. Keese, “An analysis and performance evaluation of a passive filter design techniques for charge pump PLL’s,” National Semiconductor application note 1001, July 2001.
[9] 劉深淵, 鎖相迴路, 滄海書局, 2006.
[10] J. Yuan, and C. Svensson, “High speed CMOS circuit technique,” IEEE J. of Solid-State Circuits, vol. 24, pp. 62-70, Feb. 1989.
[11] T. Mohsen, “Design of a PLL based frequency synthesizer for WiMAX applications,” 18th Iranian Conference on Electrical Engineering (ICEE), Isfahan, Iran, May 2010, pp. 377–381
[12] S.-C. Tseng, C. Meng, S. Y. Li, J. Y. Su, and G. W. Huang, “2.4 GHz divide-by-256∼271 single-ended frequency divider in standard 0.35-μm CMOS technology,” in Proc. Asia-Pacific Microwave Conference, 2005, vol.2, p. 4.
[13] M. Jung, “A 10 GHz low-power multi-modulus frequency divider using Extended True Single-Phase Clock (E-TSPC) Logic,” 7th European Microwave Integrated Circuits Conference, Amsterdam, Oct. 2012, pp. 508-511
[14] C.-S. Lin, C.L. Wey, Y.-Z Juang, C.M. Huang, “High-speed and low-power programmable frequency divider,” Proceedings of 2010 IEEE International Symposium on Circuits and Systems, Paris, June 2010, pp. 4301-4304
[15] J.-H. Tsai, Y.-W. Chung, H.-D. Shih, J.-P. Chou, “A 7–12 GHz multi-modulus frequency divider,” Asia-Pacific Microwave Conference Proceedings, Kaohsiung, Dec. 2012, pp. 1232 – 1234
[16] Behzad Razavi, 類比積體電路設計, 李泰成, 滄海書局, 2010
[17] Ali Hajimiri, and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998.
[18] Behzad Razavi, RF Microelectronics Second Edition, Los Angeles: Pearson, 2013.
[19] D. B. Leeson, “A simple model of feedBack oscillator noise spectrum,” Proc. IEEE, vol. 54, pp. 329-330, Feb. 1966.
[20] C. Patrick Yue, and S. Simon Wang, “On-chip spiral inductors with patterned ground shields for Si-based RF IC’s,” IEEE J. Solid-State Circuits, vol. 33, no.5, pp. 743-752, May 1998.
[21] Pietro Andreani and Sven Mattisson, “On the use of MOS varactors in RF VCOs ,” IEEE J. of Solid-State Circuits, vol. 35, no. 6, pp. 905-910, June 2000.
[22] Pietro Andreani and Sven Mattisson, “On the use of MOS varactors in RF VCOs, ” IEEE J. of Solid-State Circuits, vol. 35, no. 6, pp. 905-910, June 2000.
[23] KaChun Kwok, and Howard C. Luong, “Ultra-low-voltage high-performance CMOS VCOs using transformer feedBack,” IEEE J. of Solid-State Circuits, vol. 40, no. 3, pp. 652-660, Mar 2005.
[24] P. Payandehnia., H. Maghami, “High speed CML latch using active inductor in 0.18μm CMOS technology,” Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran, May 2011, pp. 1-4.
[25] To-Po Wang, Chung-Chin Li, “A 0.4-V 1.08-mW 12-GHz high-performance VCO in 0.18-µm CMOS,” 2012 IEEE Radio and Wireless Symposium, Santa Clara, CA, Jan. 2012, pp. 207-210
[26] W. De Cock, M. Steyaert, “A CMOS 10GHz voltage controlled LC-oscillator with integrated high-Q inductor,” Proceedings of the 27th European Solid-State Circuits Conference, Villach, Austria, Sept. 2001, pp. 498 – 501
[27] H.Z. Wang, “An area-efficient 5GHz/10GHz dual-mode VCO with coupled helical inductors in 0.13-UM CMOS technology,” 24th Canadian Conference on Electrical and Computer Engineering, Niagara Falls, May 2011, pp.512-515
[28] N. Seller, “A 10GHz Distributed Voltage Controlled Oscillator for WLAN Application in a VLSI 65nm CMOS Process,” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Honolulu, June 2007, pp. 115-118
[29] 泰藝電子, http://www.taitien.com.tw/cht/products_crystal.aspx, 產品規格書。
[30] P. Philippe, S. Bardy, S. Wane, F. Moreau, E. Thomas, L. Praamsma, “A low power 9.75/10.6GHz PLL in SiGe BiCMOS for Ku-band satellite LNBs,” 41st European Microwave Conference, Manchester, Oct. 2011, pp. 1130-1133
[31] J.G Maneatis, “Low-jitter process-independent DLL and PLL based on self-biased techniques,” IEEE Journal of Solid-State Circuits, vol. 31, pp.1723-1732, Nov. 1996
[32] Cheng Zhang, M. Syrzycki, “A high performance NMOS-switch high swing cascode charge pump for phase-locked loops,“ IEEE 55th International Midwest Symposium on Circuits and Systems, Boise, Aug. 2012, pp. 554-557
[33] Z. Brezović, V. Kudjak, “PLL phase-noise modeling by PC,” 19th International Conference, Bratislava, April 2009, pp. 195-198
[34] L. Dickstein, http://www.gigatronics.com/uploads/document/AN-GT140A- Introduction-to-Phase-Noise-in-Signal-Generators.pdf, pp.4.
[35] E. Suijker, L. de Boer, G. Visser, “Integrated X-band FMCW front-end in SiGe BiCMOS,” European Microwave Conference, Paris, Sept. 2010, pp. 1082-1085
[36] N. Pavlovic, J. Gosselin, K. Mistry, “A 10 GHz frequency synthesiser for 802.11a in 0.18 μm CMOS,” Proceeding of the 30th European Solid-State Circuits Conference, Sept. 2004, pp. 367-370
[37] T.-H. Lin, Yu-Jen Lai, “An Agile VCO Frequency Calibration Technique for a 10-GHz CMOS PLL,” IEEE Journal of Solid-State Circuits, vol.42, no.2, pp. 340-349, Feb. 2007
[38] 施宏達, “應用於X頻段之鎖相迴路與頻率合成器之實現與設計,” 國立台灣師範大學應用電子科技學系研究所碩士論文, 民國一百零一年
[39] J.-Y. Lee, J.K. Kwon, “A 9.1-to-11.5-GHz Four-Band PLL for X-Band Satellite & Optical Communication Applications,” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Honolulu, June 2007, pp. 233-236
[40] 周建平, “低功率鎖相迴路與電壓控制振盪器之設計與實現,” 國立台灣師範大學應用電子科技學系研究所碩士論文, 民國一百零二年