簡易檢索 / 詳目顯示

研究生: 黃鈺珊
Yu-San Huang
論文名稱: 以毛細管電泳螢光光譜法對尿液及藥錠中3,4-亞甲雙氧甲基安非他命(3,4-MDMA)及相關濫用藥物光學異構物之分析研究
CHIRAL SEPARATION OF 3,4-MDMA AND RELATED COMPOUNDS IN CLANDESTINE TABLETS AND URINE SAMPLES BY CAPILLARY ELECTROPHORESIS / FLUORESCENCE SPECTROSCOPY
指導教授: 林震煌
Lin, Cheng-Huang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 120
中文關鍵詞: 毛細管電泳MDMA螢光非水相CTAB光學異構物
論文種類: 學術論文
相關次數: 點閱:179下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 製備R-(-)-和S-(+)-3,4-MDMA的光學異構物,並以GC-MS鑑認其化學結構與純度之後,以此為標準品,做為毛細管電泳分離分析法時標準添加之用。本研究以毛細管電泳的方式成功分離了R-(-)-和S-(+)-3,4-MDMA及其相關的類似化合物,並探討電泳緩衝溶液中β-CD濃度、有機溶劑比例等電泳,以求得最佳化的分離條件。最後以此做為判定藥錠及尿液中(RS)-MDA和(RS)-MDMA的存在與否的方法,並找出R-(-)-和S-(+)-型藥錠中及尿液代謝物中彼此的相對存在量。
    本研究分別比較了水相與非水相毛細管電泳/螢光偵測法在進行光學異構物的分離與在進行線上濃縮時的優缺點,並探討當緩衝溶液中添加不同濃度的ß-CD時,SDS-陰離子界面活性劑與CTAB-陽離子界面活性劑對電泳分離的影響。實驗選用R-(-)-/S-(+)型的MDMA及其相關狡詐家藥物(MDA, DMMDA, MBDB, BDB )做為測試樣品。實驗首先合成並分離了單一型的R-(-)-與S-(+)-MDMA 標準品,經GC/MS及旋光光譜儀鑑定無誤後,做為標準添加之用。電泳分離結果發現,對於水相毛細管電泳在進行光學異構物的分離時發現β-CD與CTAB所組成的溶液(β-CD與SDS所組成的緩衝溶液)對光學異構物的分離效果較佳,可使八種光學異構物達到完全分離的效果。對非水相電泳分離而言,當非水相緩衝溶液使用150 mM CTAB (MeOH:foramide = 7: 3; v/v)時,可使MDA、MDMA、DMMDA、MBDB完全分離。而當非水相緩衝溶液添加150 mM 的β-CD,可使R-(-)-與S-(+)-型等八種光學異構物達到完全分離的效果。實驗並成功鑑定了R-(-)-與S-(+)-MDMA在MDMA藥錠及吸食MDMA者尿液中各異構物存在的比例。此外,當比較水相與非水相毛細管電泳術對線上濃縮技術時發現,以sweeping-MEKC為電泳模式的最佳緩衝溶液條件為SDS 50mM 溶解於含有機修飾劑(MeOH:ACN:H2O = 30 : 7:63 ; v/v/v;pH=2;導電度=4.4ms/cm)的溶液的效果最好。最佳進樣長度為40 cm(毛細管總長87/92cm)時的偵測極限可達1 ppb。但是SDS不適合做為非水相sweeping-MEKC之用;以非水相-stacking的技術,偵測極限仍可達2.6 ×10-8 M。

    The R-(-)- and S-(+)-isomers of 3,4-methylenedioxymethamphetamine (MDMA) and its metabolite 3,4-methylenedioxyamphetamine (MDA) were prepared, identified by GC/MS and then used as standards in a series of CE experiments. Using these R-(-)- and S-(+)-isomers, the distribution of (RS)-MDA and (RS)-MDMA stereoisomers in clandestine tablets and suspect urine samples were identified. Several electrophoretic parameters, such as the concentration of -cyclodextrin used in the electrophoretic separation and the amount of organic solvents required for the separation were optimized.

    A comparison of the use of aqueous and non-aqueous solutions in association with -cyclodextrin for the chiral separation of (R)- and (S)-3,4-methylenedioxymethamphetamine and related compounds is described. The (R)- and (S)-isomers of 3,4-methylenedioxymethamphetamine (MDMA) and its major metabolite 3,4-methylenedioxyamphetamine (MDA) were prepared. Under aqueous and non-aqueous solution conditions and based on the CZE and MEKC modes, the order of migration of (R)-MDA, (S)-MDA, (R)-MDMA and the (S)-MDMA enantioisomers were determined. Several electrophoretic parameters, including the concentration of -cyclodextrin (aqueous, 25 ~ 60 mM; non-aqueous, 20 ~ 150 mM) used in the electrophoretic separation and the amount of organic solvents required for the separation were optimized.

    中英文摘要Ⅰ 目錄 Ⅴ 圖目錄 Ⅶ 表目錄 Ⅸ 第一章、緒論 1 1.1 分析物簡介 1 1.1-1 3,4-MDMA 1 1.1-2 3,4-MDMA類濫用藥物 3 1.2 研究目的 4 第二章、分析方法與原理 6 2.1 毛細管電泳分析法之發展歷程 6 2.2 毛細管電泳分析法之基本原理 10 2.2-1 電泳分離與電泳遷移率 10 2.2-2 電滲透流與電荷粒子的遷移行為 12 2.2-3 分離效率與解析度 16 2.3 毛細管電泳層析法的分離模式 17 2.3-1 毛細管區帶電泳(CZE) 18 2.3-2 微胞電動毛細管層析(MEKC) 20 2.4 非水相毛細管電泳法 23 2.5 線上濃縮技術:毛細管電泳掃集法(sweeping) 25 2.6 螢光光譜分析法 29 2.7 液液萃取法 35 2.8 環糊精 37 第三章、儀器及藥品 43 3.1 儀器 43 3.1-1 自組式毛細管電泳螢光分析儀 43 3.1-2 氣相層析質譜儀 45 3.2 藥品 47 3.2-1 標準品 47 3.2-2 (S)-MDA與 (R)-MDMA的製備 49 第四章、毛細管電泳/螢光光譜法對3,4-MDMA及其他濫用藥物定性與定量分析法的研究 51 4.1 激發與螢光光源波長的確立 51 4.2 (R,S)-MDMA及相關濫用藥物之光學異構物的最佳化分離 53 4.2-1 水相電泳條件的確立 53 4.2-1-1 水相- CZE分離條件的確立 53 4.2-1-2 水相-MEKC分離條件的確立 56 4.2-1-3 水相-β-CD-MEKC分離條件的確立 60 4.2-2 非水相電泳條件的確立 64 4.2-2-1 非水相- CZE與非水相- MEKC分離條件的確立65 4.2-2-2 非水相- β-CD-CZE分離條件的確立 67 4.2-3 不同電泳模式對分析物分離順序的綜合探討 69 4.3 線上濃縮技術的應用 70 4.3-1 毛細管電泳掃集法(sweeping)最佳樣品堆積條件 70 4.3-2 最佳進樣長度的測量 72 4.3-3 偵測極限 75 第五章、毒粉毒尿的分析 77 5.1 液液萃取過程 77 5.2 S-(+)/(R)-(-)-MDA與S-(+)/(R)-(-)-MDMA的鑑定 77 5.3 MDA和MDMA在藥錠上的分離與鑑定 81 5.4 MDA和MDMA在可疑的尿液樣品中之分離與鑑定 84 第六章、結論 88 參考文獻 90 發表論文 94

    [1] F. Kohlrausch, Wiedemanns Ann. Phys. Chem., 62(1897)
    209-239.
    [2] S. Hjerten, Chromatogr. Rev., 9(1967) 122-239.
    [3] P. Jandik and G. Bonn, Capillary Electrophoresis of Small Molecules and Ions, VCH, New York, (1993).
    [4] S. Terabe, K. Otsuka, K. Ichikawa, A. Tsuchiya and T. Ando, Anal. Chem., 56 (1984), 111.
    [5] S. Terabe, K. Otsuka, and T. Ando, Anal. Chem., (1985), 57, 834.
    [6] K. H. Row, W. H. Griest, M. P. Maskarienc, J.Chromatogr., 409(1987) 193.
    [7] S. F. Y. Li, Capillary electrophoresis, (1992), chapter 1, pp 1-5.
    [8] S. Compton, R. Brownlee, Biotechniques, (1988), 6, 432
    [9] W. B. Hardy, J. Physiol., (1892), 24, 288.
    [10] W. B. Hardy, J. Physiol., (1905), 33, 273.
    [11] T. B. Coolidge, J. Biol. Chem., (1939), 127,551.
    [12] R. A. Consden, A. H. Gorden, and A. J. P. Martin, Biochem. J., (1946), 40, 33.
    [13] J. Porath, Biochem. Biophys. Acta., (1956), 22, 151.
    [14] S. Hjerten, Chromatogr. Rev., (1967), 9, 122.
    [15] F. E. P. Mikkers, F. M. Everaerts, and T. P. E. M. Verheggen, J. Chromatogr., (1979), 169, 11.
    [16] A. Tiselius, Trans. Faraday. Soc., 33(1997) 524.
    [17] J. Knox, Chromatographia, 26(1988) 329.
    [18] R. Virtanen, Acta Polytechnica Scand., 123(1979) 1-67.
    [19] J. W. Joegenson and K. D. Lukacs, J. Chromatogr., 218(1981) 209-216.
    [20] J. W. Joegenson and K. D. Lukacs, Anal. Chem., 53(1981) 1298-1302.
    [21] D. J. Rose and J. W. Jorgenson, Anal. Chem., (1988), 60, 642.
    [22] S. Hjerten and M. D. Zhu, J.Chromatogr., 346(1985) 265.
    [23] S. Hjertén, J. L. Liao, and K. Yao, J. Chromatogr., (1987), 387, 127.
    [24] A. Cohen and B. L. Karger, J. Chromatogr., 397(1987) 409.
    [25] X. Huang and R. N. Zare, Anal. Chem., 63(1991) 2193.
    [26] X. Huang, M. J. Gordon, and R. N. Zare, Anal. Chem., 60(1988) 375.
    [27] R. D. Holland and M. J. Sepaniak, Anal. Chem., 65(1993) 1140.
    [28] R. T. Kennedy and J. W. Jorgenson, Anal. Chem., 61(1989) 1128.
    [29] W. Lu, G. K. Poon, P. L. Carmichael, R. B. Cole, Anal. Chem. 68 (1996) 668-674.
    [30] C. -H. Lin, Y. -L. Chung, Y-H. Chen, Analyst, 126 (2001) 302-305
    [31] Y. –L. Chung, J. –T. Liu, and C. –H. Lin, J. Chromatogr. B, (2001), in press.
    [32] D. N. Heiger, Hewlett-Packard Company Publication Number 12-5091-6199E.
    [33] R. J. Hunter, Zeta potential in Colloid Science: Principles and Applications, Academic Press, New York, (1981), Chap 2.
    [34] High Performance Capillary Electrophoresis - An Introduction, Dr. David N. Heiger, (1992), 2nd edition.
    [35] H. Z. Helmholtz, Anal. Phys. Chem., (1897), 7, 337.
    [36] Jandik, P.; Bonn, G. Capillary Electrophoresis of Small Molecules and Ions, VCH, New York, (1993).
    [37] B. Krattiger, G. J. M. Bruin, and A. E. Bruin, Anal. Chem. 66 (1994) 1.
    [38] M. Stefansson and M. Novotny, Anal. Chem. 66 (1994) 1134.
    [39] Y. Kim and M. D. Morris, Anal. Chem. 66 (1994) 1168.
    [40] Z. Zhao, A. Malik, and M. L. Lee, Anal. Chem. 65 (1994) 2747.
    [41] K. Otsuka, K. Ichikawa, A. Tsuchiya, T. Ando, Electrokinetic separations with micellar solutions and open-tubular capillaries, Anal. Chem. 56 (1984) 111.
    [42] D. N. Heiger, Hewlett-Packard Company Publication Number 12-5091-6199E.
    [43] J. P. Quirino, S. Terabe, K. Otsuka, J. B. Vincent, G. Vigh, Sample concentration by sample stacking and sweeping using a microemulsion and a single-isomer sulfated β-cyclodextrin as pseudostationary phases in electrokinetic chromatography, J. Chromatogr. A 838 (1999) 3.
    [44] M. Hayek, J. Phys. Colloid. Chem. 55 (1951) 1527-1533.
    [45] M. M. Tuckerman, H. H. Strain, Anal. Chem. 32 (1960) 695-698.
    [46] N. J. Parekh, A. A. Fatmi, M. A. Tshabalala, B. L. Rodgers, J. Chromatogr. 314 (1984) 65-82.
    [47] S. Fujiwara, S. Honda, Anal. Chem. 59 (1987) 487-490.
    [48] A. J. Tomlinson, L. M. Benson, J. P. Landers, G. F. Scanlan, J. Fang, J. W. Gorrod, S. J. Naylor, J. Chromatogr. 652 (1993) 417-426.
    [49] A. J. Tomlinson, A. J. Tomlinson, J. M. Reid, D. L. Walker, M. M. Ames, S. J. Naylor, High Resolut. Chromatogr. 16 (1993) 324-326.
    [50] A. J. Tomlinson, A. J. Tomlinson, S. J. Naylor, High Resolut. Chromatogr. 176 (1994) 175-177.
    [51] Y. Walbroehl, J.W. Jorgenson, J. Chromatogr. 315 (1984) 135-143.
    [52] R. Carabias-Martý´nez,* E. Rodrý´guez-Gonzalo, J. Domý´nguez-Alvarez, and J. Herna´ ndez-Me´ ndez, Anal. Chem. 69 (1997) 4437-4444
    [53] D. L. Gallaher, J. and M. E. Johnson, Anal. Chem. 72 (2000) 2080-2086.
    [54] V. L. Ward, M. G. Khaledi, J. Chromatogr. A. 859 (1999) 203-219.
    [55] F. Wang, M. G. Khaledi, Anal. Chem. 68 (1996) 3460-3467.
    [56] F. Wang, M. G. Khaledi, J. Chromatogr. A, 817 (1998) 121-128.
    [57] F. Wang, M. G. Khaledi, J. Chromatogr. A, 875 (2000) 277-293.
    [58] V. L. Ward, M. G. Khaledi, J. Chromatogr. B, 718 (1998) 15-22.
    [59] A. J. Tomlinson, L. M. Benson, S. Naylor, LC-GC 8 (1995) 210-216.
    [60] A. J. G. Mank, E. S. Yeung, Diode laser-induced fluorescence detection in capillary electrophoresis after pre-column derivztization of amino acids and small peptides, J. Chromatogr. A 708 (1995) 309.
    [61] S. V. Rahavendran, H. T. Karnes, Visible diode laser-induced fluorescence detection of phenylacetic acid in plasma derivatized with nile blue and using pre-column phase transfer catalysis, Anal. Chem. 69 (1997) 3022.
    [62] D. L. Gallaher Jr., M. E. Johnson, Development of near-infrared fluorophoric labels for the determination of fatty acids separated by capillary electrophoresis with diode laser induced fluorescence detection, Analyst 124 (1999) 1541.
    [63] A. J. G. Mank, H. Lingeman, C. Gooijer, Diode laser-based detection in liquid chromatography and capillary electrophoresis, Trends Anal. Chem. 15(1) (1996)
    [64] B. L. Legndre Jr., D. L. Moberg, D. C. Williams, S. A. Soper, Ultrasensitive near-infrared laser-induced fluorescence detection in capillary eoectrophoresis using a diode laser and avalanche photodiode, J. Chromatogr. A 779 (1997) 185.
    [65] N. Kuroda, R. Nomura, O. Al-Dirbashi, S. Aliyama, K. Nakashima, Determination of methamphetamine and related compounds by capillary electrophoresis with UV and laser-induced fluorescence detection, J. Chromatogr. A 798 (1998) 325.
    [66] T. Kaneta, H. Shiba, T. Imasaka, Determination of cyanine-labeled amino acid enantiomers by cyclodextrin-modified capillary gel electrophoresis combined with diode laser fluorescence detection, J. Chromatogr. A 805 (1998) 295.
    [67] J. E. Melanson, C. A. Boulet, C. A. Lucy, Indirect laser-induced fluorescence detection for capillary electrophoresis using a violet diode laser, Anal. Chem. 73 (2001) 1809.
    [68] J. E. Melanson, C. A. Lucy, Violet (405 nm) diode laser for laser induced fluorescence detection in capillary electrophoresis, Analyst 125 (2000) 1049.
    [69] S. E. Moring, R. T. Reel, E. J. S. Remco, Optical improvements of a Z-shaped cell for high-sensitivity UV absorbance detection in capillary electrophoresis, Anal. Chem. 65 (1993) 3454.
    [70] D. N. Heiger, Hewlett-Packard Company Publication Number 12-5091-6199E.
    [71] J. P. Quirino, S. Terabe, K. Otsuka, J. B. Vincent, G. Vigh, Sample concentration by sample stacking and sweeping using a microemulsion and a single-isomer sulfated β-cyclodextrin as pseudostationary phases in electrokinetic chromatography, J. Chromatogr. A 838 (1999) 3.
    [72] J. P. Quirino, S. Terabe, Sample stacking of cationic and anionic analytes in capillary electrophoresis, J. Chromatogr. A 902 (2000) 119.
    [73] R.-L. Chien, in: M. G. Khaledi, (Ed.), High Performance Capillary Electrophoresis (Theory, Techniques and Applications), Chapter 13, CRC Press, (1998).
    [74] Z. Liu, P. Sam, S. R. Sirimanne, P. C. McClure, J. Grainger, D. G. Patterson, Field-amplified sample stacking in micellar electrokinetic chromatography for on-column sample concentration of neutral molecules, J. Chromatogr. A 673 (1994) 125.
    [75] K.R. Nielson, J. P. Foley , J. Chromatogr. A 686 (1994) 283
    [76] J. P. Quirino, S.Terabe, J. Chromatogr. A 781 (1997) 119
    [77] J. P. Quirino, S. Terabe, Science 282 (1998) 465
    [78] C. X. Zhang, W.Thormann, Anal. Chem 70 (1998) 540
    [79] Z. K. Shihabi, J. Chromatogr. A 817 (1998) 25
    [80] J. Palmer, N. J. Munro, J. P. Landers, Anal. Chem 71 (1999)
    [81] J. P Quirino, S. Terabe, Anal. Chem 72 (2000) 1023
    [82] J. P. Quirino, J.-B. Kim, S. Terabe, Sweeping: concentration mechanism and applications to high-sensitivity analysis in capillary electrophoresis, J. Chromatogr. A 357 (2002) 357.
    [83] Y. Takagai, S. Igarashi, UV-detection capillary electrophoresis for benzo[a]pyrene and pyrene following a two-step concentration system using homogeneous liquid-liquid extraction and a sweeping method, Analyst 126 (2001) 551.
    [84] M. R. N. Monton, J. P. Quirino, K. Otsuka, S. Terabe, Separation and on-line preconcentration by sweeping of charged analytes in electrokinetic chromatography with nonionic micelles, J. Chromatogr. A 939 (2001) 99.
    [85] R. B. Taylor, R. G. Reid, A. S. Low, Analysis of proguanil and its metabolites by application of the sweeping technique in micellar electrokinetic chromatography, J. Chromatogr. A 916 (2001) 201.
    [86] C. Fang, J.-T. Liu, C.-H. Lin, Optimization of the separation of lysergic acid diethylamide in urine by a sweeping technique using micellar electrokinetic chromatography, J. Chromatogr. B 775 (2002) 37.
    [87] C. Fang, J.-T. Liu, C.-H. Lin, Determination of lysergic acid diethylamide (LSD) by application of on-line 77K fluorescence spectroscopy and a sweeping technique in micellar electrokinetic chromatography, Talanta 58 (2002) 691.
    [88] M. J. Markuszewski, P. Britz-McKibbin, S. Terabe, K. Matsuda, T. Nishioka, Determination of pyridine and adenine nucleotide metabolites in Bacillus subtilis cell extract by sweeping borate complexation capillary electrophoresis, J. Chromatogr. A 989 (2003) 293.
    [89] C.-H. Wu, M.-C. Chen, A.-K. Su, P.-Y. Shu, S.-H. Chou, C.-H. Lin, Determination of corticosterone in mouse plasma by a sweeping technique using micellar electrokinetic chromatography, J. Chromatogr. B 785 (2003) 317.
    [90] M. R. N. Monton, K. Otsuka, S. Terabe, On-line sample preconcentration in micellar electrokinetic chromatography by sweeping with anionic-zwitterionic mixed micelles, J. Chromatogr. A 985 (2003) 435.
    [91]http://content.edu.tw/vocation/chemical_engineering/tp_ss/content-wa/wchm2/wpage2-4.htm

    QR CODE