簡易檢索 / 詳目顯示

研究生: 戴英傑
Tai Ying Chieh
論文名稱: 雷射雕刻參數對品質影響之研究
The Effect of Parameters on the Quality of Laser Marking
指導教授: 周明
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 63
中文關鍵詞: 雷射雕刻雕刻品質CO2雷射雕刻參數
英文關鍵詞: laser marking, quality, CO2 laser, marking parameters
論文種類: 學術論文
相關次數: 點閱:1409下載:314
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係利用CO2雷射雕刻機進行各種不同材質的雕刻,由於雷射雕刻的材質廣泛,經常在雕刻前必須先調整雕刻參數以獲得良好的雕刻品質,因此本研究針對各種材質進行測試,找出其較適雕刻參數的範圍,進行雕刻,再利用光學顯微鏡及微型視覺檢測系統做品質參數的分析,取得所有數據之後,再做一連串的分析及驗證工作。

    實驗結果在0~25功率下雕刻時,當功率愈大雕刻速度愈慢,深度及寬度便隨著功率增加而增加,而在同功率同速度下之比較,PVC有最大之深度,其次為壓克力、ABS及電木。本研究以雷射雕刻周邊設備為主體,以電腦整合概念為主,將材料所需之雕刻參數建立於資料庫中,提供作為發展彈性製造系統的基礎資料。

    This is a study of CO2 laser marking on various materials. Since the materials used in laser marking are extensive, typically it is necessary to adjust the marking parameters before marking for well quality. The different materials were tested to find out the proper range of marking parameters. After the marking was done, the optical microscope and the miniature vision examination system were used to analyze the quality. The data were collected for a series of analytical and identification study.

    This research concluded that under 0-25 power of marking, as power increased and marking speed decreased, the depth and the width increased. PVC has the greatest depth, following by PMMA, ABS, and PF. The experimental data of this study can be used as the database for development of CIM systems.

    總目錄 中文摘要 II 英文摘要 III 誌謝 IV 目錄 V 表目錄 VI 圖目錄 VII 附錄 IX 目錄 第一章 前言 1 1.1 研究動機 1 1.2 研究背景 1 1.3 研究目的 2 1.4 研究流程 2 第二章 文獻回顧 3 2.1 雕刻參數與品質 3 2.2 自動化應用 8 2.3 分析 10 第三章 實驗設備及方法 11 3.1 實驗流程 11 3.2 實驗材料 12 3.3 實驗設備 16 3.4 實驗程序與方法 19 3.4-1 雕刻的深度、寬度及對比度 20 3.4-2 材料雕刻參數設定 23 3.4-3 微型視覺檢測系統觀察 25 第四章 實驗結果 26 4.1 實驗分析 26 4.2 壓克力分析 27 4.3 ABS雙色板分析 31 4.4 電木分析 35 4.5 PVC分析 39 4.6 結果分析與討論 43 第五章 結論與建議 48 表目錄 表3.1 參數設計表 24 表3.2 slice level 25 表4.1 壓克力刻痕深寬比及對比度觀察結果 28 表4.2 ABS雙色板刻痕深寬比及對比度觀察結果 32 表4.3 電木刻痕深寬比及對比度觀察結果 36 表4.4 PVC刻痕深寬比及對比度觀察結果 40 表4.5 壓克力實驗數據表 44 圖目錄 圖2.1 各種功率對材質的深度切割及雷射速度的理論關係 3 圖2.2 各種功率對PMMA的深度切割及雷射速度變化 4 圖2.3不同材質的切割深度及雷射速度變化 4 圖2.4 橫向速度從4到10 mm/s的反應 5 圖2.5 在aluminium plate雕刻線寬1mm 5 圖2.6 玻璃上雕刻參數不同所呈現的比較 6 圖2.7 用LIPAA技術刻出來的中國詩詞 6 圖2.8 不銹鋼之深寬及對比度 7 圖2.9 雷射光在有機金屬薄膜雕刻情形 7 圖2.10雷射光在不同顏色薄膜雕刻情形 8 圖2.11 雷射在產品上做記號的方式 9 圖2.12 檢測方法 9 圖3.1 智慧型雷射雕刻彈性製造系統架構圖 11 圖3.2 黑色壓克力 16 圖3.3 ABS雙色板 16 圖3.4 電木 16 圖3.5 PVC 16 圖3.6 CO2雷射雕刻機 17 圖3.7 微型視覺檢測系統 18 圖3.8光學顯微鏡暨影像儲存系統 19 圖3.9 試片於雕刻範圍區內示意圖 20 圖3.10 深寬比=d/w 21 圖3.11 PVC材料之對比度觀測 22 圖3.12 雷射聚焦位置示意圖 23 圖3.13 參數操作圖 23 圖3.14 壓克力放置圖 24 圖3.15 二化層級檢測 25 圖4.1 黏土固定材料 26 圖4.2 專業量測軟體 26 圖4.3 壓克力雕刻完成圖 27 圖4.4 壓克力功率對深度的影響 29 圖4.5 壓克力功率對寬度的影響 29 圖4.6 壓克力功率對深寬比的影響 30 圖4.7 壓克力功率對對比度之影響 30 圖4.8 雙色板雕刻完成圖 31 圖4.9 雙色板功率對深度的影響 33 圖4.10 雙色板功率對寬度的影響 33 圖4.11 雙色板功率對深寬比的影響 34 圖4.12 雙色板功率對對比度之影響 34 圖4.13 電木雕刻完成圖 35 圖4.14 電木功率對深度的影響 37 圖4.15 電木功率對寬度的影響 37 圖4.16 電木功率對深寬比的影響 38 圖4.17 電木功率對對比度之影響 38 圖4.18 PVC雕刻完成圖 39 圖4.19 PVC功率對深度的影響 41 圖4.20 PVC功率對寬度的影響 41 圖4.21 PVC功率對深寬比的影響 42 圖4.22 PVC功率對對比度之影響 42 圖4.23 雕刻完成之壓克力片 44 圖4.24 壓克力(部位1) 44 圖4.25 壓克力(部位2) 44 圖4.26 最大深度與最小深度之比較 45 圖4.27 功率對4種材質深度之影響 45 圖4.28 功率對4種材質寬度之影響 46 圖4.29 功率對4種材質深寬比之影響 46 圖4.30 功率對4種材質對比度之影響 47 附錄 圖A01~A21 壓克力刻痕圖 50 圖B01~B21 ABS刻痕圖 53 圖C01~C21 電木刻痕圖 57 圖D01~D21 PVC刻痕圖 60

    1.Bruton NJ. Profiling laser coding in the packing industry. Opt Photon News Part 5 1997;8:153–60. ISBN 1047-6938.
    2.McKee TJ. How lasers mark. Electrotechnology Part 2 1996;7:27–31, ISBN 0306-8552.
    3.T.W. Ng , S.C. Yeo , “Aesthetic laser marking assessment” , Optic & Laser Technology 32 (2000) 187-191
    4.Bai Hua Zhou , S.M. Mahdavian , “Experimental and theoretical analyses of cutting nonmetallic materials by law power CO2-laser” , Journal of Materials Processung Technology 146 (2004) 188-192.
    5.Engin Molva , “Microchip lasers and their applications in optical microsystems” , Optical Materials 11 (1999) 289-299
    6.A.A. Peligrad, E. Zhoua, D. Mortona, L. Li, “Dynamic models relating processing parameters and melt track width during laser marking of clay tiles”, Optics & Laser Technology 34 (2002) 115-123
    7.S.-L. CHEN , “In-Process high power CO2 laser beam position sensing” , Optic & Laser Technology. Vol. 28 , NO. 3. pp. 193-201 , 1996.
    8.TH. Dumont , T. Lippert, A. Wokaun , P. Leyvraz , “Laser writing of 2D data matrices in glass” , Thin Solid Films 453-454 (2004) 42-45.
    9.K. Sugioka , K. Obata , K. Midorikawa , M.H. Hong , D.J. Wu , L.L. Wong , Y.F. Lu , T.C. Chong , “Advanced materials processing based on interaction of laser beam and a medium” , Journal of Photochemistry and Photobiolgy A: Chemistry 158 (2003)
    10.J. Qi , K.L. Wang , Y.M. Zhu , “A study on the laser marking process of stainless steel” , Journal of Materials Processung Technology 139 (2003) 273-276.
    11.D.R. Alexander & M.-S. Khlif , “Laser Marking Using Organo-metallic Films” , Optics and Lasers in Engineering 25 (1996) 55-70.
    12.B.S. Yilbas , “Parametric study to improve laser hole drilling process” , Journal of Materials Processing Technology 70 (1997) 264-273.
    13.Tang ZG, Ravi V, Zhao JH, “Plastic films with improved adhesion on integrated circuit packages for laser marking”, Journal of applied polymer science 84 (4): 758-766 APR 25 2002
    14.Mulholland BM. Lasermarkable engineering resins. Annual Technical Conference-ANTEC, Conference Proceedings, vol. 3, 1997. p.2702–5.
    15.Hayes O. Marking applications now encompass many materials. Laser Focus World Part 2 1997;33:2702–5. ISSN 0740-2511.
    16.H. Haferkamp , P. Jaschke , J. Stein , M. Goede , “Decoding of invisible laser markings using infrared technology” , Infrared Physics & Techology 43 (2002) 171-174.
    17.A.A. Peligrad , E. Zhou , D. Morton , L. Li , “System identification and predictive control of laser marking of ceramic materials using artificial neural net works” , Proceedings of the institution of mechanical engineers part-I-Journal of systems and control engineering 216 (I2): 181-190 2002
    18.Hossein Golnabi , “Role of laser sensor system in automation and flexible manufacturing” , Robotics and Computer –Integrated manufacturing 19 (2003) 210-210.
    19.T. Kanzaki , K. Nakano & S. Nishizawa , in : Tunnelling and ground conditions. Proc. Congress , Cairo , 1994 , ed M.E.A. Salaw , (Balkema) , 1994 , pp371-376.
    20.Lee H.S. Luong. Robotics and Computer –Integrated manufacturing : A decision support system for the selection of computer –Integrated manufacturing technologies.14 (1998) : 45-53.
    21.A.A. Peligrad , E. Zhou , D. Morton , L. Li , “A melt depth prediction model for quality control of laser surface glazing of inhomogeneous materials.” , Optic & Laser Technology 33 (2001) 7-13.
    22.W. He, Y. F. Zhang, K. S. Lee, J. Y. H. Fuh, and A. Y. C. Nee,“Automated Process Parameter Resetting for Injection Molding : a Fuzzy-neuro Approach”, Journal of Intelligent Manufacturing, Vol. 9, No. 1, pp. 17-27,1998.
    23.G. H. Choi, K. D. Lee, N. Chang, and S.G. Kim , “Optimization of Process Parameters of Injection Molding with Neural Network Application in a Process Simulation Environment”, Annals of the CIRP, Vol. 43, pp. 449-452, 1994.
    24.Babbar S, Rai A. Computer integrated flexible manufacturing : an implementation framework. Int J Oper Prod Mgmt 1990; 11(1):42-50. 171-178.
    25.Lichti, D. D., Stewart, M. P., Tsakiri M. and Snow A. J., "Calibration and Testing of A Terrestrial Laser Scanner", International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B5. Amsterdam , 2000.
    26.Zadeh,L.A.,”Fuzzy sets”,Information and Control,1965。
    27.周長彬等著,”焊接學”,全華圖書公司,1992 ,p3,p10.
    28.孫慶成: 雷射光學與其應用, 全華科技圖書股份有限公司, 光電概論(1998).
    29.林螢光: 雷射, 全華科技圖書股份有限公司, 光電子學-原理、元件與應用(1999).
    30.Lichti, D. D., Stewart, M. P., Tsakiri M. and Snow A. J., "Calibration and Testing of A Terrestrial Laser Scanner", International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B5. Amsterdam , 2000.
    31.謝俊雄著,”塑膠工程學”,文京圖書有限公司, pp.79-81.
    32.http://publish.it168.com/cword/943.shtml
    33.“Physical Metallurgy Principles”,Robert E.Reed-Hill,Reza Abbaschian, International Publishing,1992.
    34.http://home.kimo.com.tw/pvc39032224/pvc1.htm
    35.張仲卿、侯順雄、張進寬、杜鳳棋譯者,”熱傳遞”第4版,民86,高立圖書有限公司,p641,pp.778-796。
    36.SCANLAB, Installation and Operation, p25, 操作手冊。
    37.郭廣德,「酚醛樹脂發泡材料之隔熱性能研究」,國立中央大學機械系碩士論文,中壢,台灣,2000.
    38.秋葉稔光編著,賴耿陽譯著,”雷射技術原理實務”,民77,復漢出版社,p199。
    39.陳煒棠(民74)。塑膠材料學。台北:五洲, pp.71-77。
    40.陳昌泉(民78)。塑膠成形技術與實務。台北:大中國, pp.232-234。

    QR CODE