簡易檢索 / 詳目顯示

研究生: 林晏竹
LIN, Yen-Chu
論文名稱: AI客服聊天機器人與媒介豐富度對消費者態度與行為意圖之影響—以電商平台為例
The Effect of AI Customer Service Chatbots and Media Richness on Consumer Attitude and Behavior Intentions - Take an E-commerce Platform as an Example
指導教授: 蔣旭政
Chiang, Hsu-Cheng
口試委員: 林慧斐
LIN, Hui-Fei
林芝璇
LIN, Jhih-Syuan
蔣旭政
CHIANG, Hsu-Cheng
口試日期: 2022/03/31
學位類別: 碩士
Master
系所名稱: 大眾傳播研究所
Graduate Institute of Mass Communication
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 200
中文關鍵詞: 聊天機器人人工智慧客戶服務媒介豐富度社會資訊處理模式消費者行為電商平台
英文關鍵詞: Chatbot, Artificial Intelligence, Customer Service, Media Richness, Social Information Processing model, Consumer Behavior, E-commerce Platform
DOI URL: http://doi.org/10.6345/NTNU202200459
論文種類: 學術論文
相關次數: 點閱:406下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 行動商務與即時通訊軟體的蓬勃成長使聊天機器人受到高度的發展與運用。為了提供良好的客戶服務,電商平台利用聊天機器人作為即時服務媒介創造更優質的服務體驗。然而,任務導向聊天機器人卻無法解決在既定腳本外更深入、細微的消費問題,進而影響消費者行為。由此,本研究透過將人工智慧應用於客服聊天機器人,期望藉此提升消費者行為。本研究以電商平台為研究背景,採2(對話導向AI聊天機器人 vs. 任務導向聊天機器人)x2(高媒介豐富度 vs. 低媒介豐富度)二因子組間實驗設計,且就個人相關使用經驗(網路購物售後服務經驗)做進一步研究分析,並以聊天機器人態度、持續使用意圖與口碑推薦意願等三元素為消費者行為組合作為依變項,探討自變項與依變項兩者之間的交互作用與影響。
    本研究結果證實:(1)對話導向AI聊天機器人相較於任務導向聊天機器人,對於消費者行為有較佳的影響;(2)高媒介豐富度相較於低媒介豐富度,對於消費者行為有較正面的影響;(3)無論是何種媒介豐富度,在對話導向AI聊天機器人中,對於聊天機器人態度、持續使用意圖與口碑推薦意願皆不會有差異;(4)在任務導向聊天機器人中,高媒介豐富度相較於低媒介豐富度,會產生較佳的聊天機器人態度、持續使用意圖與口碑推薦意願;(5)使用客服聊天機器人後,相較於使用前會產生較正面的消費者行為;(6)具有網路購物售後服務經驗的消費者,相較於無網路購物售後服務經驗的消費者,會產生較佳的持續使用意圖,但在聊天機器人態度與口碑推薦意願則無顯著差異。

    The flourishing mobile commerce and instant messaging software have made chatbots highly developed and used. To provide more satisfactory customer service, e-commerce platforms use chatbots as an instant service medium to create a better service experience. However, task-oriented chatbots cannot solve the deeper and nuanced consumption problems beyond the established script, thereby affecting consumer behavior. Accordingly, this study hopes to improve consumer behavior by applying artificial intelligence to customer service chatbots. Based on the research background of e-commerce platforms, this study adopted a 2 (chit-chat AI chatbots vs task-oriented chatbots) x2 (high media richness vs low media richness) 2-factor, between-subject experimental design, and uses personal correlation Use experience (online shopping after-sales service experience) for further research and analysis, and uses the three elements of attitude toward chatbot, continuance intention and word-of-mouth intention to combine consumer behavior as dependent variables to explore the interaction and effects between independent variables and dependent variables.
    The results indicated that: (1) compared with task-oriented chatbots, chit-chat AI chatbots demonstrated more favorable behavior;
    (2) compared with chatbots with low media richness, chatbots with high media richness generated more favorable behavior;
    (3) no matter what level of media richness, in chit-chat AI chatbots, there will be no significant differences in attitude toward chatbot, continuance intention, and word-of-mouth intention;
    (4) in task-oriented chatbots, compared with low media richness, high media richness generated a more favorable attitude toward chatbot, continuance intention, and word-of-mouth intention;
    (5) compared with before using the customer service chatbot, using the customer service chatbot demonstrated more favorable behavior;
    (6) compared with consumers without online shopping after-sales service experience, consumers with online shopping after-sales service experience generated more favorable continuance intention, but there will be no significant differences in attitude toward chatbot and word-of-mouth intention.

    謝誌 i 摘要 iii Abstract iv 目錄 vi 表目錄 xi 圖目錄 xiii 第壹章 緒論 1 第一節 研究背景 1 第二節 研究動機 5 第三節 研究目的 7 第四節 研究問題 10 第貳章 文獻探討 11 第一節 聊天機器人(Chatbot) 11 一、 人機互動(Human-Computer Interaction) 11 二、 聊天機器人定義 13 三、 聊天機器人與電子商務 17 四、 小結 19 第二節 社會資訊處理模式(Social Information Processing model) 20 一、 社會資訊處理模式定義 20 二、 互動性(Interactivity) 21 三、 小結 23 第三節 媒介豐富理論(Media Richness Theory) 24 一、 媒介豐富理論定義 24 二、 媒介豐富理論與電子商務 25 三、 小結 28 第四節 消費者行為(Consumer Behavior) 29 一、 聊天機器人態度(Attitude toward chatbot) 29 二、 持續使用意圖(Continuance Intention) 30 三、 口碑推薦意願(Word-of-mouth Intention) 31 第五節 研究假設推導 32 一、 電商平台客服聊天機器人之類型與消費者行為的關係 33 二、 電商平台客服聊天機器人之媒介豐富度與消費者行為的關係 35 三、 電商平台客服聊天機器人之類型、媒介豐富度與消費者行為的關係 37 第參章 研究方法 40 第一節 研究架構 40 第二節 實驗設計與研究工具 41 一、 實驗設計 41 二、 研究工具 42 (一) 系統架構 42 (二) Django專案 43 (三) 建立LINE Bot 49 (四) 使用ngrok建立https伺服器 54 (五) 建立LINE Bot圖文選單 57 (六) 撰寫Python程式 59 (七) 建立QnA Maker資源 60 (八) 部署專案到Heroku 68 三、 自變項的定義與操弄 72 (一) 聊天機器人類型:對話導向AI聊天機器人與任務導向聊天機器人 72 (二) 媒介豐富度:高媒介豐富度與低媒介豐富度 73 第三節 自變項操弄檢定 75 一、 自變項測量問項 75 (一) 媒介豐富度:高媒介豐富度與低媒介豐富度 75 二、 前測一:中性產品前測 77 三、 前測二:媒介豐富度前測 79 第四節 依變項衡量 81 一、 聊天機器人態度 81 二、 持續使用意圖 82 三、 口碑推薦意願 83 第五節 主實驗刺激物呈現、實驗程序與文案設計 84 一、 主實驗刺激物呈現 84 二、 實驗程序 89 三、 文案設計 91 第肆章 研究結果 104 第一節 樣本結構與敘述統計 104 第二節 信度分析 107 第三節 正式實驗之操弄檢定 108 一、 媒介豐富度操弄檢定結果 108 第四節 研究假設之驗證 109 一、 聊天機器人類型對消費者行為之影響 112 (一) 聊天機器人類型對聊天機器人態度的影響 112 (二) 聊天機器人類型對持續使用意圖的影響 112 (三) 聊天機器人類型對口碑推薦意願的影響 113 二、 媒介豐富度對消費者行為之影響 113 (一) 媒介豐富度對聊天機器人態度的影響 113 (二) 媒介豐富度對持續使用意圖的影響 114 (三) 媒介豐富度對口碑推薦意願的影響 114 三、 聊天機器人類型與媒介豐富度對消費者行為之影響 115 (一) 聊天機器人類型與媒介豐富度對聊天機器人態度的影響 115 (二) 聊天機器人類型與媒介豐富度對持續使用意圖的影響 116 (三) 聊天機器人類型與媒介豐富度對口碑推薦意願的影響 117 第五節 問卷結果之延伸 118 一、 客服聊天機器人的使用對消費者行為之檢定 118 二、 網路購物售後服務經驗對消費者行為之檢定 119 第六節 研究假設檢定及研究問題結果 120 第伍章 討論與結論 123 第一節 研究發現與討論 123 一、 聊天機器人類型之對話導向AI聊天機器人相較於任務導向聊天機器人,對於消費者行為有較佳的影響 124 二、 媒介豐富度之高媒介豐富度相較於低媒介豐富度,對於消費者行為有較正面的影響 126 三、 無論是何種媒介豐富度,在對話導向AI聊天機器人中,對於聊天機器人態度、持續使用意圖與口碑推薦意願皆不會有差異;在任務導向聊天機器人中,高媒介豐富度相較於低媒介豐富度,會產生較佳的聊天機器人態度、持續使用意圖與口碑推薦意願 127 四、 使用客服聊天機器人後,相較於使用前會產生較正面的聊天機器人態度、持續使用意圖與口碑推薦意願 129 五、 具有網路購物售後服務經驗的消費者,相較於無網路購物售後服務經驗的消費者,會產生較佳的持續使用意圖,但在聊天機器人態度與口碑推薦意願則無顯著差異 130 第二節 學術貢獻與實務建議 131 一、 學術貢獻 131 二、 實務建議 132 第三節 研究限制 134 一、 資料庫建立之限制 134 二、 實驗設計之限制 134 三、 實驗進行之限制 135 四、 線上問卷之限制 136 第四節 未來研究方向與建議 137 一、 探討加入混合型聊天機器人對消費者行為之影響 137 二、 探討調整媒介豐富度特點對消費者行為之影響 137 三、 探討加入年齡變項對消費者行為之影響 138 四、 探討加入相關中介變項 139 五、 探討不同領域聊天機器人對消費者行為之影響 139 六、 探討其他平台聊天機器人之建議 139 參考文獻 141 中文文獻 141 英文文獻 142 附錄一:前測一問卷 174 附錄二:前測二問卷 183 附錄三:主實驗問卷 189

    中文文獻
    Earl Babbie(2013).社會科學研究方法(林秀雲譯;13版).雙葉書廊。(原著出版於1975)
    台灣網路資訊中心(2020年12月11日)。2020台灣網路報告。財團法人台灣網路資訊中心。https://report.twnic.tw/2020/
    周書暉、林祐全(2011).結合情境與情緒:人機互動理論沿革與發展.傳播管理研究.11(1),29-68。 https://doi.org/10.6430/CMR.201107.0029
    曾淑美、陳玉芬(2011).知覺風險、信任與資訊豐富度對再合購意願之影響.Electronic Commerce Studies.9(3),269-293。 https://doi.org/10.29767/ECS.201109.0002
    葉謹睿(2010).互動設計概論.藝術家。

    英文文獻
    Adiwardana, D., Luong, M. T., So, D. R., Hall, J., Fiedel, N., Thoppilan, R., Yang, Z., Kulshreshtha, A., Nemade, G., Lu, Y., & Le, Q. V. (2020). Towards a human-like open-domain chatbot. arXiv preprint arXiv:2001.09977. https://doi.org/10.48550/arXiv.2001.09977
    Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision processes, 50(2), 179-211. https://doi.org/10.1016/0749-5978(91)90020-T
    Ajzen, I., & Fishbein, M. (1977). Attitude-behavior relations: A theoretical analysis and review of empirical research. Psychological bulletin, 84(5), 888. https://doi.org/10.1037/0033-2909.84.5.888
    Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behavior. Prentice-Hall.
    Alalwan, A. A. (2018). Investigating the impact of social media advertising features on customer purchase intention. International Journal of Information Management, 42, 65-77. https://doi.org/10.1016/j.ijinfomgt.2018.06.001
    Alraimi, K. M., Zo, H., & Ciganek, A. P. (2015). Understanding the MOOCs continuance: The role of openness and reputation. Computers & Education, 80, 28-38. https://doi.org/10.1016/j.compedu.2014.08.006
    Amoroso, D. L., & Ogawa, M. (2011). Japan’s model of mobile ecosystem success: the case of NTT DoCoMo. Journal of Emerging Knowledge on Emerging Markets, 3(1), 27. https://doi.org/10.7885/1946-651X.1064
    Anandarajan, M., Zaman, M., Dai, Q., & Arinze, B. (2010). Generation Y adoption of instant messaging: An examination of the impact of social usefulness and media richness on use richness. IEEE Transactions on Professional Communication, 53(2), 132-143. https://doi.org/10.1109/TPC.2010.2046082
    Araujo, T. (2018). Living up to the chatbot hype: The influence of anthropomorphic design cues and communicative agency framing on conversational agent and company perceptions. Computers in Human Behavior, 85, 183-189. https://doi.org/10.1016/j.chb.2018.03.051
    Arnold, A. (2018, January 27). How Chatbots Feed Into Millennials' Need For Instant Gratification. Forbes. https://www.forbes.com/sites/andrewarnold/2018/01/27/how-chatbots-feed-into-millennials-need-for-instant-gratification/?sh=5547aeb33675
    Ashktorab, Z., Jain, M., Liao, Q. V., & Weisz, J. D. (2019, May). Resilient chatbots: Repair strategy preferences for conversational breakdowns. Paper presented at the meeting of the CHI conference on human factors in computing systems, Glasgow, Scotland, UK. http://qveraliao.com/chi19-1.pdf
    Baecker, R. M. (Ed.). (2014). Readings in Human-Computer Interaction: toward the year 2000. Elsevier.
    Bajaj, A., & Nidumolu, S. R. (1998). A feedback model to understand information system usage. Information & management, 33(4), 213-224. https://doi.org/10.1016/S0378-7206(98)00026-3
    Bannon, L. J. (1995). From human factors to human actors: The role of psychology and human-computer interaction studies in system design. In Readings in human–computer interaction (pp. 205-214). Morgan Kaufmann.
    Barnes, S. J. (2002). The mobile commerce value chain: analysis and future developments. International journal of information management, 22(2), 91-108. https://doi.org/10.1016/S0268-4012(01)00047-0
    Beattie, A., Edwards, A. P., & Edwards, C. (2020). A bot and a smile: Interpersonal impressions of chatbots and humans using emoji in computer-mediated communication. Communication Studies, 71(3), 409-427. https://doi.org/10.1080/10510974.2020.1725082
    Benson, V., Ezingeard, J. N., & Hand, C. (2018). An empirical study of purchase behaviour on social platforms: The role of risk, beliefs and characteristics. Information Technology & People, 32(4), 876–896. https://doi.org/10.1108/ITP-08-2017-0267
    Bhattacherjee, A. (2001a). Understanding information systems continuance: An expectation-confirmation model. MIS quarterly, 351-370. https://doi.org/10.2307/3250921
    Bhattacherjee, A. (2001b). An empirical analysis of the antecedents of electronic commerce service continuance. Decision support systems, 32(2), 201-214. https://doi.org/10.1016/S0167-9236(01)00111-7
    Bitner, M. J. (2001). Service and technology: opportunities and paradoxes. Managing Service Quality: An International Journal. https://doi.org/10.1108/09604520110410584
    Bitner, M. J. (2017). Service research: rigor, relevance, and community. Journal of Service Research, 20(2), 103-104. https://doi.org/10.1177/1094670517697515
    Black, G. S. (2005). Predictors of Consumer Trust: Likelihood to Pay Online. Marketing Intelligence & Planning, 23(7), 648–658. https://doi.org/https://doi.org/10.1108/02634500510630186
    Brandtzaeg, P. B., & Følstad, A. (2017, November). Why people use chatbots. Paper presented at the meeting of the International conference on internet science, Thessaloniki, Greece. https://doi.org/10.1007/978-3-319-70284-1_30
    Bryman, A., & Cramer, D. (1997). Quantitative data analysis with SPSS for Windows: A guide for social scientists. Routledge.
    Burgoon, J. K., Bonito, J. A., Bengtsson, B., Ramirez Jr, A., Dunbar, N. E., & Miczo, N. (1999). Testing the interactivity model: Communication processes, partner assessments, and the quality of collaborative work. Journal of management information systems, 16(3), 33-56. https://doi.org/10.1080/07421222.1999.11518255
    Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology of human-computer interaction. CRC Press.
    Carlson, J. R., & Zmud, R. W. (1999). Channel expansion theory and the experiential nature of media richness perceptions. Academy of management journal, 42(2), 153-170. https://doi.org/10.2307/257090
    Chan, T. K., Cheung, C. M., & Lee, Z. W. (2017). The state of online impulse-buying research: A literature analysis. Information & Management, 54(2), 204-217. https://doi.org/10.1016/j.im.2016.06.001
    Chang, H. H., Jeng, D. J. F., & Hamid, M. R. A. (2013). Conceptualising consumers’ word-of-mouth behaviour intention: evidence from a university education services in Malaysia. Service Business, 7(1), 17-35. https://doi.org/10.1007/s11628-012-0142-1
    Chattaraman, V., Kwon, W. S., & Gilbert, J. E. (2012). Virtual agents in retail web sites: Benefits of simulated social interaction for older users. Computers in Human Behavior, 28(6), 2055-2066. https://doi.org/10.1016/j.chb.2012.06.009
    Chau, P. Y., & Hu, P. J. H. (2001). Information technology acceptance by individual professionals: A model comparison approach. Decision sciences, 32(4), 699-719. https://doi.org/10.1111/j.1540-5915.2001.tb00978.x
    Cheng, S. I. (2011). Comparisons of competing models between attitudinal loyalty and behavioral loyalty. International Journal of Business and Social Science, 2(10), 149-166. http://ijbssnet.com/journals/Vol._2_No._14;_July_2011/18.pdf
    Cheong, K., Kim, J., & So, S. (2008). A study of strategic call center management: relationship between key performance indicators and customer satisfaction. European Journal of Social Sciences, 6(2), 268-276. https://www.researchgate.net/publication/292668468_A_study_of_strategic_call_center_management_Relationship_between_key_performance_indicators_and_customer_satisfaction
    Chi, C. C., Kuo, C. H., & Yang, T. H. (2008, June). A Class-Based Web Recommendation by User Browsing Behavior. Paper presented at the meeting of the Association for the Advancement of Computing in Education: EdMedia+ Innovate Learning, Vienna, Austria. http://www.learntechlib.org/p/29249/
    Choi, E., Ko, E., & Kim, A. J. (2016). Explaining and predicting purchase intentions following luxury-fashion brand value co-creation encounters. Journal of Business Research, 69(12), 5827-5832. https://doi.org/10.1016/j.jbusres.2016.04.180
    Chong, A. Y. L. (2013). Predicting m-commerce adoption determinants: A neural network approach. Expert systems with applications, 40(2), 523-530. https://doi.org/10.1016/j.eswa.2012.07.068
    Chung, M., Ko, E., Joung, H., & Kim, S. J. (2020). Chatbot e-service and customer satisfaction regarding luxury brands. Journal of Business Research, 117, 587-595. https://doi.org/10.1016/j.jbusres.2018.10.004
    Ciechanowski, L., Przegalinska, A., Magnuski, M., & Gloor, P. (2019). In the shades of the uncanny valley: An experimental study of human–chatbot interaction. Future Generation Computer Systems, 92, 539-548. https://doi.org/10.1016/j.future.2018.01.055
    Colwell, S. R., Aung, M., Kanetkar, V., & Holden, A. L. (2008). Toward a measure of service convenience: multiple‐item scale development and empirical test. Journal of Services Marketing, 22(2), 160-169. https://doi.org/10.1108/08876040810862895
    Constine, J. (2016). Facebook launches Messenger platform with chatbots. TechCrunch. https://techcrunch.com/2016/04/12/agents-on-messenger/
    Corti, K., & Gillespie, A. (2016). Co-constructing intersubjectivity with artificial conversational agents: people are more likely to initiate repairs of misunderstandings with agents represented as human. Computers in Human Behavior, 58, 431-442. https://doi.org/10.1016/j.chb.2015.12.039
    Daft, R. L., & Lengel, R. H. (1986). Organizational information requirements, media richness and structural design. Management science, 32(5), 554-571. https://www.jstor.org/stable/2631846
    Daft, R. L., Lengel, R. H., & Trevino, L. K. (1987). Message equivocality, media selection, and manager performance: Implications for information systems. MIS quarterly, 355-366. https://www.jstor.org/stable/248682
    Daft, R. L., & Lengel, R. H. (1983). Information Richness. A New Approach to Managerial Behavior and Organization Design. Research in Organizational Behavior. https://doi.org/10.21236/ada128980
    Dale, R. (2016). The return of the chatbots. Natural Language Engineering, 22(5), 811-817. https://doi.org/10.1017/S1351324916000243
    Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340. https://doi.org/10.2307/249008
    Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management science, 35(8), 982-1003. https://doi.org/10.1287/mnsc.35.8.982
    De Kleijn, R., Wijnen, M., & Poletiek, F. (2019). The effect of context-dependent information and sentence constructions on perceived humanness of an agent in a Turing test. Knowledge-Based Systems, 163, 794-799. https://doi.org/10.1016/j.knosys.2018.10.006
    Dellarocas, C. (2003). The digitization of word of mouth: Promise and challenges of online feedback mechanisms. Management science, 49(10), 1407-1424. https://doi.org/10.2139/ssrn.393042
    Demeure, V., Niewiadomski, R., & Pelachaud, C. (2011). How is believability of a virtual agent related to warmth, competence, personification, and embodiment?. Presence, 20(5), 431-448. https://doi.org/10.1162/PRES_a_00065
    Deng, Z., Lu, Y., Wei, K. K., & Zhang, J. (2010). Understanding customer satisfaction and loyalty: An empirical study of mobile instant messages in China. International journal of information management, 30(4), 289-300. https://doi.org/10.1016/j.ijinfomgt.2009.10.001
    Dennis, A. R., & Kinney, S. T. (1998). Testing media richness theory in the new media: The effects of cues, feedback, and task equivocality. Information systems research, 9(3), 256-274. https://doi.org/10.1287/isre.9.3.256
    Dennis, A. R., Kinney, S. T., & Hung, Y. T. C. (1999). Gender differences in the effects of media richness. Small Group Research, 30(4), 405-437. https://doi.org/10.1177/104649649903000402
    Dhingra, B., Li, L., Li, X., Gao, J., Chen, Y. N., Ahmed, F., & Deng, L. (2016). Towards end-to-end reinforcement learning of dialogue agents for information access. arXiv. https://doi.org/10.48550/arXiv.1609.00777
    Dibitonto, M., Leszczynska, K., Tazzi, F., & Medaglia, C. M. (2018, July). Chatbot in a campus environment: design of LiSA, a virtual assistant to help students in their university life. Paper presented at the meeting of the Human-Computer Interaction, Las Vegas, Nevada, USA. https://www.slideshare.net/mdibitonto/chatbot-in-a-campus-enviroment-design-of-lisa-a-virtual-assistant-to-help-students-in-their-university-life
    Dilmegani, C. (2022, March 9). 90+ Chatbot / Conversational AI Statistics: Market Size, Adoption. AI Multiple. https://research.aimultiple.com/chatbot-stats/
    Doney, P. M., & Cannon, J. P. (1997). An examination of the nature of trust in buyer–seller relationships. Journal of marketing, 61(2), 35-51. https://www.jstor.org/stable/1251829
    Duijst, D. (2017). Can we improve the user experience of chatbots with personalisation. [Unpublished Master's thesis]. University of Amsterdam. https://doi.org/10.13140/RG.2.2.36112.92165
    Engel, J. F., Blackwell, R. D., & Miniard, P. W. (1990). Customer behavior. Dryden Press.
    Engel, J. F., Blackwell, R. D., & Miniard, P. W. (1993). Consumer behavior. Dryden Press.
    Evans, P., & Wurster, T. S. (1999, November–December). Getting real about virtual commerce. Harvard Business Review, 77, 84-98. https://hbr.org/1999/11/getting-real-about-virtual-commerce
    FACEBOOK IQ. (2018, June 15). Why Messaging Businesses is the New Normal. Meta for Business. https://www.facebook.com/business/news/insights/why-messaging-businesses-is-the-new-normal
    Fiore, S. M., Wiltshire, T. J., Lobato, E. J., Jentsch, F. G., Huang, W. H., & Axelrod, B. (2013). Toward understanding social cues and signals in human–robot interaction: effects of robot gaze and proxemic behavior. Frontiers in psychology, 4, 859. https://doi.org/10.3389/fpsyg.2013.00859
    Fishbein, M., & Ajzen, I. (1977). Belief, attitude, intention, and behavior: An introduction to theory and research. Philosophy and Rhetoric, 10(2). https://www.jstor.org/stable/40237022
    Følstad, A., & Skjuve, M. (2019, August). Chatbots for customer service: user experience and motivation. Paper presented at the meeting of the conversational user interfaces, Dublin, Ireland. https://doi.org/10.1145/3342775.3342784
    Fox, M. S. (1990). Al and expert system myths, legends, and facts. IEEE expert, 5(1), 8-19. https://doi.org/10.1109/64.50853
    Fryer, L. K., Nakao, K., & Thompson, A. (2019). Chatbot learning partners: Connecting learning experiences, interest and competence. Computers in Human Behavior, 93, 279-289. https://doi.org/10.1016/j.chb.2018.12.023
    Gartner. (2019, July 11). Market Guide for Virtual Customer Assistants. https://www.gartner.com/en/documents/3947357
    Gavilan, D., Avello, M., & Abril, C. (2014). The mediating role of mental imagery in mobile advertising. International Journal of Information Management, 34(4), 457-464. https://doi.org/10.1016/j.ijinfomgt.2014.04.004
    Gebauer, J., & Scharl, A. (1999). Between flexibility and automation: an evaluation of web technology from a business process perspective. Journal of Computer-Mediated Communication, 5(2), JCMC525. https://doi.org/10.1111/j.1083-6101.1999.tb00340.x
    Gefen, D. (2000). E-commerce: the role of familiarity and trust. Omega, 28(6), 725-737. https://doi.org/10.1016/S0305-0483(00)00021-9
    Gentsch, P. (2019). Conversational ai: How (chat) bots will reshape the digital experience. AI in marketing, sales and service (pp. 81-125). Palgrave Macmillan. https://doi.org/10.1007/978-3-319-89957-2_4
    Go, E., & Sundar, S. S. (2019). Humanizing chatbots: The effects of visual, identity and conversational cues on humanness perceptions. Computers in Human Behavior, 97, 304-316. https://doi.org/10.1016/j.chb.2019.01.020
    Gremler, D. D., & Gwinner, K. P. (2000). Customer-employee rapport in service relationships. Journal of Service Research, 3(1), 82-104. https://doi.org/10.1177/109467050031006
    Häubl, G., & Trifts, V. (2000). Consumer decision making in online shopping environments: The effects of interactive decision aids. Marketing science, 19(1), 4-21. https://doi.org/10.1287/mksc.19.1.4.15178
    Haugeland, I. K. F., Følstad, A., Taylor, C., & Bjørkli, C. (2022). Understanding the user experience of customer service chatbots: An experimental study of chatbot interaction design. International Journal of Human-Computer Studies, 102788. https://doi.org/10.1016/j.ijhcs.2022.102788
    Hill, J., Ford, W. R., & Farreras, I. G. (2015). Real conversations with artificial intelligence: A comparison between human–human online conversations and human–chatbot conversations. Computers in human behavior, 49, 245-250. https://doi.org/10.1016/j.chb.2015.02.026
    Ho, A., Hancock, J., & Miner, A. S. (2018). Psychological, relational, and emotional effects of self-disclosure after conversations with a chatbot. Journal of Communication, 68(4), 712-733. https://doi.org/10.1093/joc/jqy026
    Hoffman, D. L., & Novak, T. P. (1996). Marketing in hypermedia computer-mediated environments: Conceptual foundations. Journal of marketing, 60(3), 50-68. https://www.jstor.org/stable/1251841
    Hoffman, D. L., Novak, T. P., & Peralta, M. (1999). Building consumer trust online. Communications of the ACM, 42(4), 80-85. https://doi.org/10.1145/299157.299175
    Huang, M. H., & Rust, R. T. (2018). Artificial intelligence in service. Journal of Service Research, 21(2), 155-172. https://doi.org/10.1177/1094670517752459
    Huang, M., Ali, R., & Liao, J. (2017). The effect of user experience in online games on word of mouth: A pleasure-arousal-dominance (PAD) model perspective. Computers in Human Behavior, 75, 329-338. https://doi.org/10.1016/j.chb.2017.05.015
    Huang, S. Y., & Lee, C. J. (2022). Predicting continuance intention to fintech chatbot. Computers in Human Behavior, 107027. https://doi.org/10.1016/j.chb.2021.107027
    Hung, V., Elvir, M., Gonzalez, A., & DeMara, R. (2009, October). Towards a method for evaluating naturalness in conversational dialog systems. Paper presented at the meeting of the IEEE international conference on systems, man and cybernetics, San Antonio, TX, USA. https://doi.org/10.1109/ICSMC.2009.5345904
    Hurme, P. (2005). Mobile communication and work practices in knowledge-based organizations. Human Technology, 1(1), 101-108. https://doi.org/10.17011/ht/urn.2005128
    Ipsos. (2009, November 17). MMA Updates Definition of Mobile Marketing. MMA. https://www.mmaglobal.com/news/mma-updates-definition-mobile-marketing
    Ipsos. (2015, February 19). Ipsos study for PayPal reveals drivers and barriers of mobile shopping around the world. Ipsos MORI. https://www.ipsos.com/ipsos-mori/en-uk/ipsos-study-paypal-reveals-drivers-and-barriers-mobile-shopping-around-world
    Ireland, R. D., & Webb, J. W. (2007). Strategic entrepreneurship: Creating competitive advantage through streams of innovation. Business horizons, 50(1), 49-59. https://doi.org/10.1016/j.bushor.2006.06.002
    Ismagilova, E., Dwivedi, Y. K., Slade, E., & Williams, M. D. (2017). Electronic word of mouth (eWOM) in the marketing context: A state of the art analysis and future directions. Springer International Publishing.
    Jain, M., Kumar, P., Kota, R., & Patel, S. N. (2018, June). Evaluating and informing the design of chatbots. Paper presented at the meeting of the Designing Interactive Systems Conference, Hong Kong, China. https://doi.org/10.1145/3196709.3196735
    Jalilvand, M. R., Esfahani, S. S., & Samiei, N. (2011). Electronic word-of-mouth: Challenges and opportunities. Procedia Computer Science, 3, 42-46. https://doi.org/10.1016/j.procs.2010.12.008
    Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business Horizons, 61(4), 577-586. https://doi.org/10.1016/j.bushor.2018.03.007
    Johnson, A., Roush, T., Fulton, M., & Reese, A. (2017). Implementing Physical Capabilities for an Existing Chatbot by Using a Repurposed Animatronic to Synchronize Motor Positioning with Speech. International Journal of Advanced Studies in Computers, Science and Engineering, 6(1), 20. https://www.proquest.com/docview/1912934842
    Johnson, G. J., Bruner II, G. C., & Kumar, A. (2006). Interactivity and its facets revisited: Theory and empirical test. Journal of advertising, 35(4), 35-52. https://doi.org/10.2753/JOA0091-3367350403
    Jovic, D. (2020, November 20). The future is now—37 fascinating chatbot statistics. SmallBizGenius. https://www.smallbizgenius.net/by-the-numbers/chatbot-statistics.
    JUNIPER RESEARCH. (2021). BANK COST SAVINGS VIA CHATBOTS TO REACH $7.3 BILLION BY 2023, AS AUTOMATED CUSTOMER EXPERIENCE EVOLV. JUNIPER RESEARCH. https://www.juniperresearch.com/press/bank-cost-savings-via-chatbots-reach-7-3bn-2023
    Kahai, S. S., & Cooper, R. B. (2003). Exploring the core concepts of media richness theory: The impact of cue multiplicity and feedback immediacy on decision quality. Journal of management information systems, 20(1), 263-299. https://doi.org/10.1080/07421222.2003.11045754
    Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1), 15-25. https://doi.org/10.1016/j.bushor.2018.08.004
    Kim, C., Galliers, R. D., Shin, N., Ryoo, J. H., & Kim, J. (2012). Factors influencing Internet shopping value and customer repurchase intention. Electronic commerce research and applications, 11(4), 374-387. https://doi.org/10.1016/j.elerap.2012.04.002
    Kim, S., & Park, H. (2013). Effects of various characteristics of social commerce (s-commerce) on consumers’ trust and trust performance. International Journal of Information Management, 33(2), 318-332. https://doi.org/10.1016/j.ijinfomgt.2012.11.006
    Kirsh, D. (1991). Foundations of AI: the big issues. Artificial intelligence, 47(1-3), 3-30. https://doi.org/10.1016/0004-3702(91)90048-O
    Klie, L. (2013, April 1). Should your company abandon phone support?. CRM Magazine, 17(4), 24-27. https://www.destinationcrm.com/Articles/Editorial/Magazine-Features/Should-Your-Company-Abandon-Phone-Support-88201.aspx?pageNum=2
    Kotler, P., Roberto, E., & Hugo, H. (1991). Social marketing. Econ-Verlag.
    Koumaras, V., Foteas, A., Papaioannou, A., Kapari, M., Sakkas, C., & Koumaras, H. (2018, September). 5G performance testing of mobile chatbot applications. Paper presented at the meeting of the IEEE 23rd International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), Barcelona, Spain. https://doi.org/10.1109/CAMAD.2018.8515004
    Kraut, R. E., Rice, R. E., Cool, C., & Fish, R. S. (1998). Varieties of social influence: The role of utility and norms in the success of a new communication medium. Organization Science, 9(4), 437-453. https://doi.org/10.1287/orsc.9.4.437
    Kuligowska, K. (2015). Commercial chatbot: performance evaluation, usability metrics and quality standards of embodied conversational agents. Professionals Center for Business Research, 2. https://doi.org/10.18483/PCBR.22
    Kvale, K., Sell, O. A., Hodnebrog, S., & Følstad, A. (2019, November). Improving conversations: lessons learnt from manual analysis of chatbot dialogues. Chatbot Research and Design (pp.187-200). Springer. https://doi.org/10.1007/978-3-030-39540-7_13
    Lai, J., Wood, D., & Considine, M. (2000, April). The effect of task conditions on the comprehensibility of synthetic speech. Paper presented at the meeting of the SIGCHI conference on Human factors in computing systems, Hague, Netherlands. https://doi.org/10.1145/332040.332451
    Landauer, T. K. (1987). Relations between cognitive psychology and computer system design. Interfacing thought: cognitive aspects of human-computer interaction, 1-25. https://dl.acm.org/doi/10.5555/87725.87735
    Laranjo, L., Dunn, A. G., Tong, H. L., Kocaballi, A. B., Chen, J., Bashir, R., Surian, D., Gallego, B., Magrabi, F., Lau, A., & Coiera, E. (2018). Conversational agents in healthcare: a systematic review. Journal of the American Medical Informatics Association : JAMIA, 25(9), 1248–1258. https://doi.org/10.1093/jamia/ocy072
    Le Chi, C. (2016). A formative model of the relationship between destination quality, tourist satisfaction and intentional loyalty: An empirical test in Vietnam. Journal of hospitality and tourism management, 26, 50-62. https://doi.org/10.1016/j.jhtm.2015.12.002
    Lee, D., Oh, K. J., & Choi, H. J. (2017, February). The chatbot feels you-a counseling service using emotional response generation. Paper presented at the meeting of the IEEE international conference on big data and smart computing (BigComp), Jeju, Korea (South). https://doi.org/10.1109/BIGCOMP.2017.7881752
    Lee, H. Y., Qu, H., & Kim, Y. S. (2007). A study of the impact of personal innovativeness on online travel shopping behavior—A case study of Korean travelers. Tourism Management, 28(3), 886-897. https://doi.org/10.1016/j.tourman.2006.04.013
    Lee, K. M., Park, N., & Song, H. (2005). Can a robot be perceived as a developing creature? Effects of a robot's long‐term cognitive developments on its social presence and people's social responses toward it. Human communication research, 31(4), 538-563. https://doi.org/10.1111/j.1468-2958.2005.tb00882.x
    Lee, K. M., Peng, W., Jin, S. A., & Yan, C. (2006). Can robots manifest personality?: An empirical test of personality recognition, social responses, and social presence in human–robot interaction. Journal of communication, 56(4), 754-772. https://doi.org/10.1111/j.1460-2466.2006.00318.x
    Lee, S., & Choi, J. (2017). Enhancing user experience with conversational agent for movie recommendation: Effects of self-disclosure and reciprocity. International Journal of Human-Computer Studies, 103, 95-105. https://doi.org/10.1016/j.ijhcs.2017.02.005
    Lee, Y., Kozar, K. A., & Larsen, K. R. (2009). Avatar e-mail versus traditional e-mail: Perceptual difference and media selection difference. Decision Support Systems, 46(2), 451-467. https://doi.org/10.1016/j.dss.2007.11.008
    Lester, J., Branting, K., & Mott, B. (2004). Conversational agents. The Practical Handbook of Internet Computing, 220-240. https://www.semanticscholar.org/paper/Conversational-Agents-Mott-Lester/f80f21703bd867e11e3334d41daa86c923d99961
    Leung, X. Y., & Wen, H. (2020). Chatbot usage in restaurant takeout orders: A comparison study of three ordering methods. Journal of Hospitality and Tourism Management, 45, 377-386. https://doi.org/10.1016/j.jhtm.2020.09.004
    Liao, S. H., Chung, Y. C., Hung, Y. R., & Widowati, R. (2010, December). The impacts of brand trust, customer satisfaction, and brand loyalty on word-of-mouth. Paper presented at the meeting of the IEEE international conference on industrial engineering and engineering management, Macao, China. https://doi.org/10.1109/IEEM.2010.5674402
    Liljander, V., Polsa, P., & Forsberg, K. (2007). Do mobile CRM services appeal to loyalty program customers?. International Journal of E-Business Research (IJEBR), 3(2), 24-40. https://doi.org/10.4018/jebr.2007040103
    Lim, K. H., & Benbasat, I. (2000). The effect of multimedia on perceived equivocality and perceived usefulness of information systems. MIS quarterly, 449-471. https://doi.org/10.2307/3250969
    Luo, X., Tong, S., Fang, Z., & Qu, Z. (2019). Frontiers: Machines vs. humans: The impact of artificial intelligence chatbot disclosure on customer purchases. Marketing Science, 38(6), 937-947. https://doi.org/10.1287/mksc.2019.1192
    Maity, M., & Dass, M. (2014). Consumer decision-making across modern and traditional channels: E-commerce, m-commerce, in-store. Decision Support Systems, 61, 34-46. https://doi.org/10.1016/j.dss.2014.01.008
    Maity, M., Dass, M., & Kumar, P. (2018). The impact of media richness on consumer information search and choice. Journal of Business Research, 87, 36-45. https://doi.org/10.1016/j.jbusres.2018.02.003
    Maruti Techlabs (2017, October 13). What is a Conversational UI and why does it matter? Chatbots Magazine. https://chatbotsmagazine.com/what-is-a-conversational-ui-and-why-it-matters-de358507b9a2
    Mayer, R. C., Davis, J. H., & Schoorman, F. D. (1995). An integrative model of organizational trust. Academy of management review, 20(3), 709-734. https://www.jstor.org/stable/258792
    Mayzlin, D. (2006). Promotional chat on the Internet. Marketing science, 25(2), 155-163. https://doi.org/10.1287/mksc.1050.0137
    McCarthy, J. (2007). What is artificial intelligence?. http://jmc.stanford.edu/articles/whatisai/whatisai.pdf
    McGrath, J. E. (1993). Putting the" Group" Back in Group Support Systens: Some Thepretical Issues About Dynamic Processes in Groups with Technological Enhancements. Group Support systems: New perpectives, 78-96. https://ci.nii.ac.jp/naid/10010243844/#cit
    McLean, G., & Osei-Frimpong, K. (2017). Examining satisfaction with the experience during a live chat service encounter-implications for website providers. Computers in Human Behavior, 76, 494-508. https://doi.org/10.1016/j.chb.2017.08.005
    McLean, G., & Wilson, A. (2016). Evolving the online customer experience… is there a role for online customer support?. Computers in Human Behavior, 60, 602-610. https://doi.org/10.1016/j.chb.2016.02.084
    Messenger Platform. (2021). Messenger API for Instagram. Meta for Developers. https://developers.facebook.com/products/messenger/messenger-api-instagram/?locale=en_US
    Meuter, M. L., Ostrom, A. L., Roundtree, R. I., & Bitner, M. J. (2000). Self-service technologies: understanding customer satisfaction with technology-based service encounters. Journal of marketing, 64(3), 50-64. https://doi.org/10.1509/jmkg.64.3.50.18024
    Mimoun, M. S. B., Poncin, I., & Garnier, M. (2017). Animated conversational agents and e-consumer productivity: The roles of agents and individual characteristics. Information & Management, 54(5), 545-559. https://doi.org/10.1016/j.im.2016.11.008
    Morgan, B. (2019, March 4). The 20 Best Examples Of Using Artificial Intelligence For Retail Experiences. Forbes. https://www.forbes.com/sites/blakemorgan/2019/03/04/the-20-best-examples-of-using-artificial-intelligence-for-retail-experiences/?sh=3f331a0d4466
    Nader, C. (2003). Generation Y: Complex, discerning and suspicious. The Age.
    Nass, C., & Moon, Y. (2000). Machines and mindlessness: Social responses to computers. Journal of social issues, 56(1), 81-103. https://doi.org/10.1111/0022-4537.00153
    Negash, S., Ryan, T., & Igbaria, M. (2003). Quality and effectiveness in web-based customer support systems. Information & management, 40(8), 757-768. https://doi.org/10.1016/S0378-7206(02)00101-5
    Ngai, E. W., & Gunasekaran, A. (2007). A review for mobile commerce research and applications. Decision support systems, 43(1), 3-15. https://doi.org/10.1016/j.dss.2005.05.003
    Nordheim, C. B. (2018). Trust in chatbots for customer service–findings from a questionnaire study [Unpublished master's thesis]. University of Oslo. https://www.duo.uio.no/bitstream/handle/10852/63498/1/CecilieBertinussenNordheim_masteroppgaveV18.pdf
    Norman, D. A. (1986). Cognitive engineering. User Centered System Design (pp.31-61). Lawrence Erlbaum Association. https://doi.org/10.1201/b15703-3
    Norman, D. A. (2004). Emotional design: Why we love (or hate) everyday things. Basic Books.
    Ogara, S. O., Koh, C. E., & Prybutok, V. R. (2014). Investigating factors affecting social presence and user satisfaction with mobile instant messaging. Computers vin Human Behavior, 36, 453-459. https://doi.org/10.1016/j.chb.2014.03.064
    Okuda, T., & Shoda, S. (2018). AI-based chatbot service for financial industry. Fujitsu Scientific and Technical Journal, 54(2), 4-8. https://www.fujitsu.com/global/documents/about/resources/publications/fstj/archives/vol54-2/paper01.pdf
    Ostrom, A. L., Fotheringham, D., & Bitner, M. J. (2019). Customer acceptance of AI in service encounters: understanding antecedents and consequences. Handbook of Service Science, Volume II (pp. 77-103). Springer. https://doi.org/10.1007/978-3-319-98512-1_5
    Özdemir, A., Tozlu, E., Şen, E., & Ateşoğlu, H. (2016). Analyses of word-of-mouth communication and its effect on students’ university preferences. Procedia-Social and Behavioral Sciences, 235, 22-35. https://doi.org/10.1016/j.sbspro.2016.11.022
    Park, C. H., & Kim, Y. G. (2006). The effect of information satisfaction and relational benefit on consumers' online shopping site commitments. Journal of Electronic Commerce in Organizations (JECO), 4(1), 70-90. https://doi.org/10.4018/jeco.2006010105
    Parthasarathy, M., & Bhattacherjee, A. (1998). Understanding post-adoption behavior in the context of online services. Information systems research, 9(4), 362-379. https://www.jstor.org/stable/23011032
    Patel, S. (2017, January 21). 6 Effective Uses for Chatbots in Marketing. Forbes. https://www.forbes.com/sites/sujanpatel/2017/01/21/6-effective-uses-for-chatbots-in-marketing/?sh=202475c03f48
    Pavlou, P. A., Lie, T., & Dimoka, A. (2007). What drives mobile commerce? An antecedent model of mobile commerce adoption. An Antecedent Model of Mobile Commerce Adoption. https://doi.org/10.2139/SSRN.2380712
    Pérez, J. Q., Daradoumis, T., & Puig, J. M. M. (2020). Rediscovering the use of chatbots in education: A systematic literature review. Computer Applications in Engineering Education, 28(6), 1549-1565. https://doi.org/10.1002/cae.22326
    Pezrz, S. (2018, March 3). F Voice shopping estimated to hit $40+ billion across U.S. and U.K. by 2022. TechCrunch. https://techcrunch.com/2018/03/02/voice-shopping-estimated-to-hit-40-billion-across-u-s-and-u-k-by-2022/?guccounter=1
    Powell, T. C., & Dent‐Micallef, A. (1997). Information technology as competitive advantage: The role of human, business, and technology resources. Strategic management journal, 18(5), 375-405. https://doi.org/10.1002/(SICI)1097-0266(199705)18:5<375::AID-SMJ876>3.0.CO;2-7
    Prendergast, G., Ko, D., & Siu Yin, V. Y. (2010). Online word of mouth and consumer purchase intentions. International journal of advertising, 29(5), 687-708. https://doi.org/10.2501/S0265048710201427
    Quarteroni, S., & Manandhar, S. (2009). Designing an interactive open-domain question answering system. Natural Language Engineering, 15(1), 73. https://doi.org/10.1017/S1351324908004919
    Rafaeli, S. (1988). From new media to communication. Sage annual review of communication research: Advancing communication science, 16, 110-134. https://www.academia.edu/533664/Interactivity_From_new_media_to_communication?auto=citations&from=cover_page
    Raphaeli, O., Goldstein, A., & Fink, L. (2017). Analyzing online consumer behavior in mobile and PC devices: A novel web usage mining approach. Electronic commerce research and applications, 26, 1-12. https://doi.org/10.1016/j.elerap.2017.09.003
    Reeves, B., & Nass, C. (1996). The media equation: How people treat computers, television, and new media like real people. Cambridge University Press.
    Reichheld, F. F., & Schefter, P. (2000, July–August). E-loyalty: your secret weapon on the web. Harvard business review, 78(4), 105-113. https://hbr.org/2000/07/e-loyalty-your-secret-weapon-on-the-web
    Robinette, P., Wagner, A. R., & Howard, A. M. (2014, August). Assessment of robot guidance modalities conveying instructions to humans in emergency situations. Paper presented at the meeting of the IEEE International Symposium on Robot and Human Interactive Communication, Edinburgh, UK. https://doi.org/10.1109/ROMAN.2014.6926390
    Roscoe, J. T. (1975). Fundamental research statistics for the behavioral sciences. Holt, Rinehart and Winston.
    Rouse, M. (2018, January 5). What is chatbot?. TechTarget. https://searchcustomerexperience.techtarget.com/definition/chatbot
    Rust, R. T. (2020). The future of marketing. International Journal of Research in Marketing, 37(1), 15-26. https://doi.org/10.1016/j.ijresmar.2019.08.002
    Sadeddin, K. W., Serenko, A., & Hayes, J. (2007). Online shopping bots for electronic commerce: the comparison of functionality and performance. International Journal of Electronic Business, 5(6), 576-589. https://doi.org/10.1504/IJEB.2007.016472
    Sallam, M. A. A., & Wahid, N. A. (2012). Endorser credibility effects on Yemeni male consumer's attitudes towards advertising, brand attitude and purchase intention: The mediating role of attitude toward brand. International Business Research, 5(4), 55. https://doi.org/10.5539/ibr.v5n4p55
    Sands, S., Ferraro, C., Campbell, C., & Tsao, H. Y. (2020). Managing the Human–Chatbot Divide: How Service Scripts Influence Service Experience. Journal of Service Management, 32(2), 246–264. https://doi.org/https://doi.org/10.1108/JOSM-06-2019-0203
    Sarwar, M., & Soomro, T. R. (2013). Impact of smartphone’s on society. European journal of scientific research, 98(2), 216-226. https://www.researchgate.net/publication/236669025_Impact_of_Smartphone%27s_on_Society
    Shankar, V. (2018). How artificial intelligence (AI) is reshaping retailing. Journal of retailing, 94(4), vi-xi. https://doi.org/10.1016/S0022-4359(18)30076-9
    Shankar, V., Venkatesh, A., Hofacker, C., & Naik, P. (2010). Mobile marketing in the retailing environment: current insights and future research avenues. Journal of interactive marketing, 24(2), 111-120. https://doi.org/10.1016/j.intmar.2010.02.006
    Shareef, M. A., Dwivedi, Y. K., Kumar, V., & Kumar, U. (2017). Content design of advertisement for consumer exposure: Mobile marketing through short messaging service. International Journal of Information Management, 37(4), 257-268. https://doi.org/10.1016/j.ijinfomgt.2017.02.003
    Shawar, B. A., & Atwell, E. (2007). Chatbots: are they really useful? Ldv forum, 22, 29-49. https://www.semanticscholar.org/paper/Chatbots%3A-Are-they-Really-Useful-Shawar-Atwell/8d8284bfba7ebcb4e2575d864ec7c16ea6a168f0
    Shevat, A. (2017). Designing bots: Creating conversational experiences. O'Reilly Media.
    Shneiderman, B. (2000). Universal usability. Communications of the ACM, 43(5), 84-91. https://doi.org/10.1145/332833.332843
    Smith, M. D. (2002). The impact of shopbots on electronic markets. Journal of the academy of marketing Science, 30(4), 446-454. https://doi.org/10.1177/009207002236916
    Spence, P. R., Westerman, D., Edwards, C., & Edwards, A. (2014). Welcoming our robot overlords: Initial expectations about interaction with a robot. Communication Research Reports, 31(3), 272-280. https://doi.org/10.1080/08824096.2014.924337
    Statista. (2015, January 8). Number of mobile messaging app users worldwide in December 2014 (in million) (Anzahl der Nutzer von Mobile Messaging Apps weltweit im Dezember 2014 (in Millionen). Statista. https://de.statista.com/statistik/daten/studie/216439/umfrage/bekanntheit-und-nutzung-von-instant-messenger-apps/
    Statista. (2019a). Most Popular Mobile Messaging Apps Worldwide as of January 2019, Based on Number of Monthly Active Users (In Millions). Statista. https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/
    Statista. (2019b). Number of available chatbots on Facebook Messenger in selected months from June 2016 to April 2019 (in 1,000) (Anzahl der verfügbaren Chatbots im Facebook Messenger in ausgewählten Monaten von Juni 2016 bis April 2019 2018 (in 1.000)). Statista. https://de.statista.com/statistik/daten/studie/662144/umfrage/anzahl-der-verfuegbaren-chatbots-fuer-den-facebook-messenger/
    Steels, L. (2007, January). Fifty years of AI: From symbols to embodiment-and back. Paper presented at the meeting of the 50 years of artificial intelligence, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77296-5_3
    Suh, K. S. (1999). Impact of communication medium on task performance and satisfaction: an examination of media-richness theory. Information & Management, 35(5), 295-312. https://doi.org/10.1016/S0378-7206(98)00097-4
    Suhaili, S. M., Salim, N., & Jambli, M. N. (2021). Service chatbots: A systematic review. Expert Systems with Applications, 184, 115461. https://doi.org/10.1016/j.eswa.2021.115461
    Sundar, S. S. (2009). Media effects 2.0: Social and psychological effects of communication technologies. na.
    Sundar, S. S., & Kim, J. (2005). Interactivity and persuasion: Influencing attitudes with information and involvement. Journal of interactive advertising, 5(2), 5-18. https://doi.org/10.1080/15252019.2005.10722097
    Sundar, S. S., Bellur, S., Oh, J., Jia, H., & Kim, H. S. (2016). Theoretical importance of contingency in human-computer interaction: effects of message interactivity on user engagement. Communication Research, 43(5), 595-625. https://doi.org/10.1177/0093650214534962
    Sundar, S. S., Kalyanaraman, S., & Brown, J. (2003). Explicating web site interactivity: Impression formation effects in political campaign sites. Communication research, 30(1), 30-59. https://doi.org/10.1177/0093650202239025
    Takahashi, D. (2018, September 11). Newzoo: Smartphone users will top 3 billion in 2018, hit 3.8 billion by 2021. Venture Beat. https://venturebeat.com/2018/09/11/newzoo-smartphone-users-will-top-3-billion-in-2018-hit-3-8-billion-by-2021/
    Tatai, G., Csordás, A., Kiss, Á., Szaló, A., & Laufer, L. (2003, September). Happy chatbot, happy user. Paper presented at the meeting of the International Workshop on Intelligent Virtual Agents, Kloster Irsee, Germany. https://doi.org/10.1007/978-3-540-39396-2_2
    Thies, I. M., Menon, N., Magapu, S., Subramony, M., & O’neill, J. (2017, September). How do you want your chatbot? An exploratory Wizard-of-Oz study with young, urban Indians. Paper presented at the meeting of the IFIP Conference on Human-Computer Interaction, Bombay, India. https://doi.org/10.1007/978-3-319-67744-6_28
    Transparency Market Research (2020, February 10). Businesses In Chatbot Market Leverage Personalized Customer Outreach Capabilities To Scale New Heights, Valuation To Expand At CAGR Of 31.3% During 2020 - 2027: TMR. Transparency Market Research. https://www.transparencymarketresearch.com/pressrelease/chatbot-market.htm
    Treviño, L. K., Webster, J., & Stein, E. W. (2000). Making connections: Complementary influences on communication media choices, attitudes, and use. Organization Science, 11(2), 163-182. https://doi.org/10.1287/orsc.11.2.163.12510
    Triandis, H. C. (1971). Attitude and Attitude Change. Wiley.
    Tseng, C. H., & Wei, L. F. (2020). The efficiency of mobile media richness across different stages of online consumer behavior. International Journal of Information Management, 50, 353-364. https://doi.org/10.1016/j.ijinfomgt.2019.08.010
    Tseng, F. C., Cheng, T. C. E., Li, K., & Teng, C. I. (2017). How does media richness contribute to customer loyalty to mobile instant messaging? Internet Research, 27(3), 520-537. http://doi.org/10.1108/IntR-06-2016-0181
    Turel, O., & Connelly, C. E. (2013). Too busy to help: Antecedents and outcomes of interactional justice in web-based service encounters. International Journal of Information Management, 33(4), 674-683. https://doi.org/10.1016/j.ijinfomgt.2013.03.005
    Van Bruggen, G. H., Antia, K. D., Jap, S. D., Reinartz, W. J., & Pallas, F. (2010). Managing marketing channel multiplicity. Journal of Service Research, 13(3), 331-340. https://doi.org/10.1177/1094670510375601
    Van den Broeck, E., Zarouali, B., & Poels, K. (2019). Chatbot advertising effectiveness: When does the message get through?. Computers in Human Behavior, 98, 150-157. https://doi.org/10.1016/j.chb.2019.04.009
    Van der Heijden, H. (2004). User Acceptance of Hedonic Information Systems. MIS Quarterly, 28(4), 695–704. https://doi.org/https://doi.org/https://doi.org/10.2307/25148660
    van Esch, P., & Black, J. S. (2019). Factors that influence new generation candidates to engage with and complete digital, AI-enabled recruiting. Business Horizons, 62(6), 729-739. https://doi.org/10.1016/j.bushor.2019.07.004
    van Esch, P., & Mente, M. (2018). Marketing video-enabled social media as part of your e-recruitment strategy: Stop trying to be trendy. Journal of Retailing and Consumer Services, 44, 266-273. https://doi.org/10.1016/j.jretconser.2018.06.016
    Vatanasombut, B., Igbaria, M., Stylianou, A. C., & Rodgers, W. (2008). Information systems continuance intention of web-based applications customers: The case of online banking. Information & management, 45(7), 419-428. https://doi.org/10.1016/j.im.2008.03.005
    Vazquez, D., Dennis, C., & Zhang, Y. (2017). Understanding the effect of smart retail brand–Consumer communications via mobile instant messaging (MIM)–An empirical study in the Chinese context. Computers in Human Behavior, 77, 425-436. https://doi.org/10.1016/j.chb.2017.08.018
    Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision sciences, 39(2), 273-315. https://doi.org/10.1111/j.1540-5915.2008.00192.x
    Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157–178. https://www.jstor.org/stable/41410412
    Verhagen, T., Van Nes, J., Feldberg, F., & Van Dolen, W. (2014). Virtual customer service agents: Using social presence and personalization to shape online service encounters. Journal of Computer-Mediated Communication, 19(3), 529-545. https://doi.org/10.1111/jcc4.12066
    Verhoef, P. C., Lemon, K. N., Parasuraman, A., Roggeveen, A., Tsiros, M., & Schlesinger, L. A. (2009). Customer experience creation: Determinants, dynamics and management strategies. Journal of retailing, 85(1), 31-41. https://doi.org/10.1016/j.jretai.2008.11.001
    Vickery, S. K., Droge, C., Stank, T. P., Goldsby, T. J., & Markland, R. E. (2004). The performance implications of media richness in a business-to-business service environment: Direct versus indirect effects. Management Science, 50(8), 1106-1119. https://doi.org/10.1287/mnsc.1040.0248
    Von der Puetten, A. M., Krämer, N. C., Gratch, J., & Kang, S. H. (2010). “It Doesn’t Matter What You Are!” Explaining Social Effects of Agents and Avatars. Computers in Human Behavior, 26(6), 1641–1650. https://doi.org/https://doi.org/10.1016/j.chb.2010.06.012
    Wagner, A. R. (2015, June). Exploring human-robot trust: Insights from the first 1000 subjects. Paper presented at the meeting of the International Conference on Collaboration Technologies and System, Atlanta, GA, USA. https://doi.org/10.1109/CTS.2015.7210395
    Walther, J. B. (1992). Interpersonal effects in computer-mediated interaction: A relational perspective. Communication research, 19(1), 52-90. https://doi.org/10.1177/009365092019001003
    Wang, W., Hsieh, J. P. A., & Song, B. (2012). Understanding user satisfaction with instant messaging: An empirical survey study. International Journal of Human-Computer Interaction, 28(3), 153-162. https://doi.org/10.1080/10447318.2011.568893
    Watson, C., McCarthy, J., & Rowley, J. (2013). Consumer attitudes towards mobile marketing in the smart phone era. International Journal of Information Management, 33(5), 840-849. https://doi.org/10.1016/j.ijinfomgt.2013.06.004
    Weizenbaum, J. (1966). ELIZA—a computer program for the study of natural language communication between man and machine. Communications of the ACM, 9(1), 36-45. https://doi.org/10.1145/365153.365168
    Wirtz, J., Patterson, P. G., Kunz, W. H., Gruber, T., Lu, V. N., Paluch, S., & Martins, A. (2018). Brave new world: service robots in the frontline. Journal of Service Management. https://doi.org/10.1108/JOSM-04-2018-0119
    Wixom, B. H., & Todd, P. A. (2005). A theoretical integration of user satisfaction and technology acceptance. Information systems research, 16(1), 85-102. https://doi.org/10.1287/isre.1050.0042
    Woodside, A. G., & Ko, E. (2013). Luxury fashion and culture. Emerald Group Publishing. https://books.google.com.tw/books/about/Luxury_Fashion_and_Culture.html?id=musc4Gsi42YC&redir_esc=y
    Wooldridge, M. (1999). Intelligent agents. Multiagent systems: A modern approach to distributed artificial intelligence, 1, 27-73. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.41.7456&rep=rep1&type=pdf
    Wu, B., & Chen, X. (2017). Continuance intention to use MOOCs: Integrating the technology acceptance model (TAM) and task technology fit (TTF) model. Computers in Human Behavior, 67, 221-232. https://doi.org/10.1016/j.chb.2016.10.028
    Wu, J. H., & Wang, S. C. (2005). What drives mobile commerce?: An empirical evaluation of the revised technology acceptance model. Information & management, 42(5), 719-729. https://doi.org/10.1016/j.im.2004.07.001
    Xiao, B., & Benbasat, I. (2007). E-commerce product recommendation agents: use, characteristics, and impact. MIS Quarterly, 31(1), 137-209. https://doi.org/10.2307/25148784
    Xiao, J., Stasko, J., & Catrambone, R. (2002). Embodied conversational agents as a UI paradigm: A framework for evaluation. Embodied conversational agents-let's specify and evaluate them. https://www.vhml.org/workshops/AAMAS/papers/xiao.pdf
    Xiao, L., & Kumar, V. (2021). Robotics for customer service: a useful complement or an ultimate substitute?. Journal of Service Research, 24(1), 9-29. https://doi.org/10.1177/1094670519878881
    Xu, Y., Shieh, C. H., van Esch, P., & Ling, I. L. (2020). AI customer service: Task complexity, problem-solving ability, and usage intention. Australasian marketing journal, 28(4), 189-199. https://doi.org/10.1016/j.ausmj.2020.03.005
    Yu, N., & Kong, J. (2016). User experience with web browsing on small screens: Experimental investigations of mobile-page interface design and homepage design for news websites. Information Sciences, 330, 427-443. https://doi.org/10.1016/j.ins.2015.06.004
    Zaichkowsky, J. L. (1994). The personal involvement inventory: Reduction, revision, and application to advertising. Journal of advertising, 23(4), 59-70. https://www.jstor.org/stable/4188951
    Zarouali, B., Van den Broeck, E., Walrave, M., & Poels, K. (2018). Predicting consumer responses to a chatbot on Facebook. Cyberpsychology, Behavior, and Social Networking, 21(8), 491-497. https://doi.org/10.1089/cyber.2017.0518
    Zhang, M., Hu, M., Guo, L., & Liu, W. (2017). Understanding relationships among customer experience, engagement, and word-of-mouth intention on online brand communities. Internet Research, 27(4), 839-857. https://doi.org/10.1108/intr-06-2016-0148
    Zhang, S., & Fjermestad, J. (2008). Instant Messaging: Observations from Two Small E‐commerce Businesses. Journal of Enterprise Information Management, 21(2), 179–197. https://doi.org/https://doi.org/10.1108/17410390810851417
    Zhang, W. N., Zhu, Q., Wang, Y., Zhao, Y., & Liu, T. (2019). Neural personalized response generation as domain adaptation. World Wide Web, 22(4), 1427-1446. https://doi.org/10.48550/arXiv.1701.02073
    Zumstein, D., & Hundertmark, S. (2017). CHATBOTS – AN INTERACTIVE TECHNOLOGY FOR PERSONALIZED COMMUNICATION, TRANSACTIONS AND SERVICES. IADIS International Journal on WWW/Internet, 15(1), 96–109. http://www.iadisportal.org/ijwi/papers/2017151107.pdf

    無法下載圖示 電子全文延後公開
    2025/12/09
    QR CODE