簡易檢索 / 詳目顯示

研究生: 林佩瑛
Pei-Ying Lin
論文名稱: 第十七型脊髓小腦運動失調症:遺傳檢測暨細胞模式之氧化壓力與細胞毒性研究
Spinocerebellar ataxia type 17: genetic testing and oxidative stress and cytotoxicity studies using SCA17 lymphoblastoid and HEK-293 cell models
指導教授: 李桂楨
Lee, Guey-Jen
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 87
中文關鍵詞: 第十七型脊髓小腦運動失調症氧化壓力細胞毒性
英文關鍵詞: Spinocerebellar ataxia type 17, oxidative stress, cytotoxicity
論文種類: 學術論文
相關次數: 點閱:150下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第十七型脊髓小腦運動失調症(SCA17)為體染色體顯性遺傳的神經退化性疾病,起因於位在染色體 6q27 位置上的 TATA-binding protein(TBP)基因之 CAG/CAA 三核苷酸重複擴增,轉譯出帶有不正常的聚麩醯胺鏈(polyQ tract)的蛋白質產物,造成蛋白質構形改變而產生錯誤摺疊與聚集,導致疾病。目前SCA17致病機轉尚未完全瞭解,且尚無有效治療方法,加上疾病進程發展及變異極大,因此瞭解 TBP 基因 CAG 三核苷酸重複在族群中的分佈情形及探討可能致病機轉,將對發展疾病治療策略有所助益。本論文即以 SCA17 為主題,首先進行臺灣地區正常人族群、帕金森氏症患者族群、原發性顫抖症患者族群與其它神經退化性疾病患者族群的 TBP 基因CAG 三核苷酸重複遺傳分析,發現 CAG/CAA 重複次數的頻率主要集中在 36 個重複序列,並於 OPMD 及 TICS 疾病中發現有兩名不正常擴增的例子(44 and 45 repeats),顯示 TBP 基因重複擴增序列可能與其它神經疾病相關。另一部分利用年齡與性別配對的 SCA17 淋巴細胞株及建立誘導式 SCA17 細胞模式,檢視氧化壓力與熱休克蛋白在 SCA17 上扮演的角色。氧化劑 TBH 處理後兩種細胞模式皆顯示帶有 polyQ 擴增的細胞對氧化壓力的耐受性顯著差於帶有正常 TBP 的細胞,推論氧化壓力可能參與 SCA17 致病機轉。此外,在 SCA17 淋巴細胞株或誘導式 SCA17 細胞模式觀察到 HSPA8 與 HSPB1 表現量的改變,暗示此兩種熱休克蛋白亦可能參與 SCA17 致病機轉。最後,組蛋白去乙醯酶抑制劑 valproate 可增加帶有 polyQ 擴增細胞的存活率的發現,將有利於找出 SCA17 治療策略的目標。

    Spinocerebellar ataxia 17 (SCA17) is an inherited progressive neurodegenerative disease. It is caused by an expanded polyglutamine (polyQ) tract in the TATA-box binding protein (TBP), a general transcription initiation factor, which is crucial for most gene transcription. The expanded polyQ causes a conformational change leading to protein misfolding and aggregation. However, it remains unclear how the polyQ tract affects cellular protein function and induces selective loss of neurons. In this study, we examined the CAG/CAA repeat size range in TBP allele in Taiwanese control subjects and in patients with Parkinson’s disease, essential tremor, and other neurological disorders by SCA17 genotyping. The most common TBP allele contains 36 repeats and two expanded (44 and 45 repeats) alleles were found in patients with OPMD and TICS. Using age- and gender-matched lymphoblastoid and stably induced HEK-293 cells with expanded polyQ, we examined the roles of oxidative stress and chaperones in the pathogenesis of SCA17. In both cell models the relative cell death ratio in cells expressed expanded TBP is significantly higher than that in cells expressed normal TBP upon prooxidant TBH (tert-butyl hydroperoxide) treatment. The results suggest that oxidative stress may be involved in SCA17 pathogenesis. In addition, altered HSPA8 and HSPB1 expressions were observed in lymphoblastoid model or stably induced HEK-293 model, suggesting that HSPA8 and HSPB1 may be involved in SCA17 pathogenesis. Finally, the finding that treatment of histone deacetylases inhibitor valproate increases the viability of cells expressing expanded TBP may help to identify potential targets of SCA17 therapies.

    目錄……………………………………………………………………….I 中文摘要………………………………………………………………...V 英文摘要………………………………………………………………..VI 圖表目錄……………………………………………………………….VII 壹、緒論………………………………………………………………....1 一、脊髓小腦運動失調症……………………………………………1 二、第十七型脊髓小腦運動失調症…………………………………3 三、多麩醯胺酸擴增疾病與氧化壓力………………………………5 四、熱休克蛋白………………………………………………………6 五、藥物篩檢研究進展………………………………………………8 貳、研究目的………………………………………………………………10 參、研究材料與方法………………………………………………………11 一、TBP等位基因之族群遺傳分析…………………………………11 (一)血液樣本來源……………………………………………………11 (二)基因組 DNA(Genomic DNA)萃取…………………………11 (三)聚合酶連鎖反應(PCR)及TBP 基因型分析(Genotyping)12 二、SCA17 病患淋巴細胞株模式……………………………………13 (一)細胞來源…………………………………………………………13 (二)細胞培養…………………………………………………………13 (三)細胞死亡率 - Trypan blue 排除檢測(Trypan blue exclusion assay)……………………………………………14 (四)淋巴細胞株的蛋白質分析…………………………………………14 1. 蛋白質萃取…………………………………………………………14 2. 西方轉漬法(Western blotting)……………………………15 三、誘導式 SCA17 細胞模式……………………………………………16 (一)細胞來源……………………………………………………………16 (二)細胞培養……………………………………………………………16 (三)不完整 N 端 TBP 重組質體構築…………………………………17 1. DNA 片段純化………………………………………………………17 2. 轉型勝任細胞(Competent cells)製備………………………18 3. 接合反應……………………………………………………………19 4. 細菌轉型作用(Transformation)……………………………19 5. 質體 DNA 小量製備………………………………………………19 6. 質體 DNA 大量製備………………………………………………20 (四)誘導式 SCA17 細胞株建立………………………………………21 (五)誘導式 SCA17 細胞株的RNA分析………………………………23 1. RNA 萃取……………………………………………………………23 2. 反轉錄作用(Reverse transcription)………………………24 3. 同步定量 PCR (Real-time PCR)……………………………24 (六)誘導式 SCA17 細胞株的蛋白質分析……………………………25 (七)次細胞蛋白質分群(Subcellular protein fractionation) 分析…………………………………………………………………26 (八)細胞螢光觀察………………………………………………………27 (九)細胞存活率檢測……………………………………………………27 1. WST-1 細胞增生檢測(WST-1 cell proliferation assay)……………………………………………………………27 2. MTT 細胞增生檢測(MTT cell proliferation assay)…28 肆、結果…………………………………………………………………………30 一、TBP 等位基因之族群遺傳分析……………………………………30 二、淋巴細胞株對氧化壓力之耐受性…………………………………31 三、淋巴細胞株之熱休克蛋白表現……………………………………33 四、誘導式 SCA17 細胞模式之建立…………………………………34 五、誘導式 SCA17 細胞模式對藥物之敏感性………………………37 六、誘導式 SCA17 細胞模式之熱休克蛋白表現……………………40 伍、討論………………………………………………………………………42 一、TBP 等位基因之族群遺傳分析……………………………………42 二、淋巴細胞株對去血清及氧化壓力之耐受性………………………43 三、淋巴細胞株之熱休克蛋白表現……………………………………44四、誘 導式 SCA17 細胞模式之建立……………………………………45 五、誘導式 SCA17 細胞模式對藥物之敏感性………………………47 六、誘導式 SCA17 細胞模式之熱休克蛋白表現……………………48 七、淋巴細胞株與誘導式 SCA17 細胞模式之差異…………………49 陸、參考文獻…………………………………………………………………51 柒、附錄圖表…………………………………………………………………66

    黃慧茹(2007)。第十七型脊髓小腦運動失調症:遺傳檢測及發展生化暨酵母菌的藥物篩檢模式。國立臺灣師範大學生命科學系九十五學年度碩士論文。
    Adachi H, Katsuno M, Minamiyama M, Sang C, Pagoulatos G, Angelidis C, Kusakabe M, Yoshiki A, Kobayashi Y, Doyu M, Sobue G (2003) Heat Shock Protein 70 Chaperone Overexpression Ameliorates Phenotypes of the Spinal and Bulbar Muscular Atrophy Transgenic Mouse Model by Reducing Nuclear-Localized Mutant Androgen Receptor Protein. J Neurosci 23: 2203-2211.
    Albers DS, Beal MF (2000) Mitochondrial dysfunction and oxidative stress in aging and neurodegenerative disease. J Neural Transm Suppl 59:133-154.
    Alonso I, Costa C, Gomes A, Ferro A, Seixas AI, Silva S, Cruz VT, Coutinho P, Sequeiros J, Silveira I (2005) A novel H101Q mutation causes PKCgamma loss in spinocerebellar ataxia type 14. J Hum Genet 50: 523-529.
    Beal MF, Ferrante RJ (2004) Experimental therapeutics in transgenic mouse models of huntington's disease. Nat Rev Neurosci 5:373-384.
    Belay HT, Brown IR (2006) Cell death and expression of heat-shock protein Hsc70 in the hyperthermic rat brain. J Neurochem 97 Suppl 1:116-119.
    Berger Z, Ravikumar B, Menzies FM, Oroz LG, Underwood BR, Pangalos MN, Schmitt I, Wullner U, Evert BO, O'Kane CJ, Rubinsztein DC (2006) Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum Mol Genet 15:433-442.
    Bernardini C, Fantinati P, Zannoni A, Forni M, Tamanini C, Bacci ML (2004) Expression of HSP70/HSC70 in swine blastocysts: effects of oxidative and thermal stress. Mol Reprod Dev 69:303-307.
    Bogdanov MB, Andreassen OA, Dedeoglu A, Ferrante RJ, Beal MF (2001) Increased oxidative damage to DNA in a transgenic mouse model of huntington's disease. J Neurochem 79:1246-1249.
    Browne SE, Bowling AC, MacGarvey U, Baik MJ, Berger SC, Muqit MM, Bird ED, Beal MF (1997) Oxidative damage and metabolic dysfunction in huntington's disease: Selective vulnerability of the basal ganglia. Ann Neurol 41:646-653.
    Browne SE, Ferrante RJ, Beal MF (1999) Oxidative stress in huntington's disease. Brain Pathol 9:147-163.
    Brusse E, de Koning I, Maat-Kievit A, Oostra BA, Heutink P, van Swieten JC (2006) Spinocerebellar ataxia associated with a mutation in the fibroblast growth factor 14 gene (SCA27): A new phenotype. Mov Disord. 2006 Mar;21(3):396-401.
    Burley SK, Roeder RG (1996) Biochemistry and structural biology of transcription factor IID (TFIID). Annu Rev Biochem 65:769-799.
    Cha JH, Frey AS, Alsdorf SA, Kerner JA, Kosinski CM, Mangiarini L, Penney JB, Davies SW, Bates GP, Young AB (1999) Altered neurotransmitter receptor expression in transgenic mouse models of huntington's disease. Philos Trans R Soc Lond B Biol Sci 354:981-989.
    Chai Y, Koppenhafer SL, Bonini NM, and Paulson H (1999) Analysis of the Role of Heat Shock Protein (Hsp) Molecular Chaperones in Polyglutamine Disease. J Neurosci 19:10338-10347.
    Chan HY, Warrick JM, Gray-Board GL, Paulson HL, Bonini NM (2000) Mechanisms of chaperone suppression of polyglutamine disease: selectivity, synergy and modulation of protein solubility in Drosophila. Hum Mol Genet 9:2811-2820.
    Chen M, Ona VO, Li M, Ferrante RJ, Fink KB, Zhu S, Bian J, Guo L, Farrell LA, Hersch SM, Hobbs W, Vonsattel J-, Cha J-J, Friedlander RM (2000) Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of huntington disease. Nat Med 6:797-801.
    Chen CM, Lane HY, Wu YR, Ro LS, Chen FL, Hung WL, Hou YT, Lin CY, Huang SY, Chen IC, Soong BW, Li ML, Hsieh-Li HM, Su MT, Lee-Chen GJ (2005) Expanded trinucleotide repeats in the TBP/SCA17 gene mapped to chromosome 6q27 are associated with schizophrenia. Schizophr Res 78:131-136.
    Cordeiro Y, Lima LM, Gomes MP, Foguel D, Silva JL (2004) Modulation of prion protein oligomerization, aggregation, and beta-sheet conversion by 4,4'-dianilino-1,1'-binaphthyl-5,5'-sulfonate (bis-ANS). J Biol Chem 279:5346-5352.
    Cummings CJ, Zoghbi HY (2000) Fourteen and counting: Unraveling trinucleotide repeat diseases. Hum Mol Genet 9:909-916.
    Cummings CJ, Sun Y, Opal P, Antalffy B, Mestri R, Orr HT, Dillmann, WH, Zoghbi HY (2001) Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum Mol Genet 10:1511-1518.
    David G, Abbas N, Stevanin G, Duerr A, Yvert G, Cancel G, Weber C, Imbert G, Saudou F, Antoniou E, Drabkin H, Gemmill R, Giunti P, Benomar A, Brice A (1997) Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet 17:65-70.
    De Michele G, Maltecca F, Carella M, Volpe G, Orio M, De Falco A, Gombia S, Servadio A, Casari G, Filla A, Bruni A (2003) Dementia, ataxia, extrapyramidal features, and epilepsy: Phenotype spectrum in two italian families with spinocerebellar ataxia type 17. Neurol Sci 24:166-167.
    Dedeoglu A, Kubilus JK, Jeitner TM, Matson SA, Bogdanov M, Kowall NW, Matson WR, Cooper AJL, Ratan RR, Beal MF, Hersch SM, Ferrante RJ (2002) Therapeutic effects of cystamine in a murine model of huntington's disease. J Neurosci 22:8942-8950.
    DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277:1990-1993.
    Duenas AM, Goold R, Giunti P (2006) Molecular pathogenesis of spinocerebellar ataxias. Brain 129:1357-1370.
    Ferrante RJ, Kubilus JK, Lee J, Ryu H, Beesen A, Zucker B, Smith K, Kowall NW, Ratan RR, Luthi-Carter R, Hersch SM (2003) Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in huntington's disease mice. J Neurosci 23:9418-9427.
    Ferrao-Gonzales AD, Robbs BK, Moreau VH, Ferreira A, Juliano L, Valente AP, Almeida FC, Silva JL, Foguel D (2005) Controlling β-amyloid oligomerization by the use of naphthalene sulfonates: trapping low molecular weight oligomeric species. J Biol Chem 280:34747-34754.
    Friedman MJ, Shah AG, Fang Z, Ward EG, Warren ST, Li S, Li X (2007) Polyglutamine domain modulates the TBP-TFIIB interaction: implications for its normal function and neurodegeneration. Nat Neurosci 10:1519-1528.
    Fujigasaki H, Martin JJ, De Deyn PP, Camuzat A, Deffond D, Stevanin G, Dermaut B, Van Broeckhoven C, Dürr A, Brice A (2001) CAG repeat expansion in the TATA box-binding protein gene causes autosomal dominant cerebellar ataxia. Brain 124:1939-1947.
    Gold BG, Voda J, Yu X, Gordon H (2004) The immunosuppressant FK506 elicits a neuronal heat shock response and protects against acrylamide neuropathy. Exp Neurol 187:160-170.
    Goldberg YP, Nicholson DW, Rasper DM, Kalchman MA, Koide HB, Graham RK, Bromm M, Kazemi-Esfarjani P, Thornberry NA, Vaillancourt JP, Hayden MR (1996) Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nat Genet 13:442-449.
    Goswami A, Dikshit P, Mishra A, Mulherkar S, Nukina N, Jana NR (2006) Oxidative stress promotes mutant huntingtin aggregation and mutant huntingtin-dependent cell death by mimicking proteasomal malfunction. Biochem Biophys Res Commun 342:184-190.
    Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852-1858.
    Hernandez D, Hanson M, Singleton A, Gwinn-Hardy K, Freeman J, Ravina B, Doheny D, Gallardo M, Weiser R, Hardy J, Singleton A (2003) Mutation at the SCA17 locus is not a common cause of parkinsonism. Parkinsonism Relat Disord 9:317-320.
    Hockly E, Richon VM, Woodman B, Smith DL, Zhou X, Rosa E, Sathasivam K, Ghazi-Noori S, Mahal A, Lowden PAS, Steffan JS, Marsh JL, Thompson LM, Lewis CM, Marks PA, Bates GP (2003) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of huntington's disease. Proc Natl Acad Sci USA 100:2041-2046.
    Holmes SE, O'Hearn EE, McInnis MG, Gorelick-Feldman DA, Kleiderlein JJ, Callahan C, Kwak NG, Ingersoll-Ashworth RG, Sherr M, Sumner AJ, Sharp AH, Ananth U, Seltzer WK, Boss MA, Vieria-Saecker AM, Epplen JT, Riess O, Ross CA, Margolis RL (1999) Expansion of a novel CAG trinucleotide repeat in the 5' region of PPP2R2B is associated with SCA12. Nat Genet 23: 391-392.
    Ikeda Y, Dick KA, Weatherspoon MR, Gincel D, Armbrust KR, Dalton JC, Stevanin G, Dürr A, Zühlke C, Bürk K, Clark HB, Brice A, Rothstein JD, Schut LJ, Day JW, Ranum LP (2006) Spectrin mutations cause spinocerebellar ataxia type 5. Nat Genet 38: 184-190.
    Imbert G, Saudou F, Yvert G, Devys D, Trottier Y, Garnier JM, Weber C, Mandel JL, Cancel G, Abbas N, Durr A, Didierjean O, Stevanin G, Agid Y, Brice A (1996) Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet 14: 285-291.
    Karpuj MV, Becher MW, Springer JE, Chabas D, Youssef S, Pedotti R, Mitchell D, Steinman L (2002) Prolonged survival and decreased abnormal movements in transgenic model of huntington disease, with administration of the transglutaminase inhibitor cystamine. Nat Med 8:143-149.
    Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, Kawakami H, Nakamura S, Kakizuka A (1994) CAG expansions in a novel gene for machado-joseph disease at chromosome 14q32.1. Nat Genet 8:221-228.
    Kiang JG, Tsokos GC (1998) Heat Shock Protein 70 kDa: Molecular biology, biochemistry, and physiology. Pharmacol Ther 80:183-201.
    Kiang JG (2004) Inducible heat shock protein 70 kD and inducible nitric oxide synthase in hemorrhage/resuscitation-induced injury. Cell Res 14:450-459.
    Knuckey NW, Palm D, Primiano M, Epstein MH, Johanson CE (1995) N-acetylcysteine enhances hippocampal neuronal survival after transient forebrain ischemia in rats. Stroke 26:305-310; discussion 311.
    Kobayashi Y, Kume A, Li M, Doyu M, Hata M, Ohtsuka K, Sobue G (2000) Chaperones Hsp70 and Hsp40 suppress aggregate formation and apoptosis in cultured neuronal cells expressing truncated androgen receptor protein with expanded polyglutamine tract. J Biol Chem 275:8772-8778.
    Kobayashi Y, Sobue G (2001) Protective effect of chaperones on polyglutamine diseases. Brain Res Bull 56:165-168.
    Koide R, Ikeuchi T, Onodera O, Tanaka H, Igarashi S, Endo K, Takahashi H, Kondo R, Ishikawa A, Hayashi T, Saito M, Tomoda A, Miike T, Naito H, Ikuta F, Tsuji S (1994) Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet 6: 9-13.
    Koide R, Kobayashi S, Shimohata T, Ikeuchi T, Maruyama M, Saito M, Yamada M, Takahashi H, Tsuji S (1999) A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: A new polyglutamine disease? Hum Mol Genet 8:2047-2053.
    Koob MD, Moseley ML, Schut LJ, Benzow KA, Bird TD, Day JW, Ranum LP (1999) An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet 21: 379-384.
    Lasek K, Lencer R, Gaser C, Hagenah J, Walter U, Wolters A, Kock N, Steinlechner S, Nagel M, Zuehlke C, Nitschke M-, Brockmann K, Klein C, Rolfs A, Binkofski F (2006) Morphological basis for the spectrum of clinical deficits in spinocerebellar ataxia 17 (SCA17). Brain 129:2341-2352.
    Lewis SE, Mannion RJ, White FA, Coggeshall RE, Beggs S, Costigan M, Martin JL, Dillmann WH, Woolf CJ (1999) A role for HSPB1 in sensory neuron survival. J Neurosci 19:8945-8953.
    Lo W, Liu K, Liao I, Song Y (2004) Cloning and molecular characterization of heat shock cognate 70 from tiger shrimp (Penaeus monodon). Cell Stress Chaperones 9:332-343.
    Maltecca F, Filla A, Castaldo I, Coppola G, Fragassi NA, Carella M, Bruni A, Cocozza S, Casari G, Servadio A, De Michele G (2003) Intergenerational instability and marked anticipation in SCA-17. Neurology 61:1441-1443.
    Manto M (2005) The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum 4:2-6.
    Matsuura T, Yamagata T, Burgess DL, Rasmussen A, Grewal RP, Watase K, Khajavi M, McCall AE, Davis CF, Zu L, Achari M, Pulst SM, Alonso E, Noebels JL, Nelson DL, Zoghbi HY, Ashizawa T (2000) Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet 26: 191-194.
    Milutinovic S, D’Alessio AC, Detich N, Szyf M (2007) Valproate induces widespread epigenetic reprogramming which involves demethylation of specific genes. Carcinogenesis 28:560-571.
    Mitsui K, Nakayama H, Akagi T, Nekooki M, Ohtawa K, Takio K, Hashikawa T, Nukina N (2002) Purification of polyglutamine aggregates and identification of elongation factor-1alpha and heat shock protein 84 as aggregate-interacting proteins. J Neurosci 22:9267-9277.
    Nakamura K, Jeong S, Uchihara T, Anno M, Nagashima K, Nagashima T, Ikeda S, Tsuji S, Kanazawa I (2001) SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet 10:1441-1448.
    Ohtsuka K, Hata M (2000) Molecular chaperone function of mammalian Hsp70 and Hsp40--a review. Int J Hyperthermia 16:231-245.
    Ohtsuka K, Suzuki T (2000) Roles of molecular chaperones in the nervous system. Brain Res Bull 53:141-146.
    Okazawa H (2003) Polyglutamine diseases: A transcription disorder? Cell Mol Life Sci 60:1427-1439.
    Ona VO, Li M, Vonsattel JPG, Andrews LJ, Khan SQ, Chung WM, Frey AS, Menon AS, Li X, Stieg PE, Yuan J, Penney JB, Young AB, Cha JJ, Friedlander RM (1999) Inhibition of caspase-1 slows disease progression in a mouse model of huntington's disease. Nature 399:263-267.
    Orr HT, Chung M, Banfi S, Kwiatkowski TJ,Jr, Servadio A, Beaudet AL, McCall AE, Duvick LA, Ranum LPW, Zoghbi HY (1993) Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 4:221-226.
    Peng GS, Li G, Tzeng NS, Chen PS, Chuang DM, Hsu YD, Yang S, Hong JS (2005) Valproate pretreatment protects dopaminergic neurons from LPS-induced neurotoxicity in rat primary midbrain cultures: role of microglia. Brain Res Mol Brain Res 134:162-169.
    Perez MK, Paulson HL, Pendse SJ, Saionz SJ, Bonini NM, Pittman RN (1998) Recruitment and the role of nuclear localization in polyglutamine-mediated aggregation. J Cell Biol 143:1457-1470.
    Perez-Severiano F, Ríos C, Segovia J (2000) Striatal oxidative damage parallels the expression of a neurological phenotype in mice transgenic for the mutation of huntington's disease. Brain Res 862:234-237.
    Perez-Severiano F, Escalante B, Vergara P, Ríos C, Segovia J (2002) Age-dependent changes in nitric oxide synthase activity and protein expression in striata of mice transgenic for the huntington's disease mutation. Brain Res 951:36-42.
    Perutz MF, Johnson T, Suzuki M, Finch JT (1994) Glutamine repeats as polar zippers: Their possible role in inherited neurodegenerative diseases. Proc Natl Acad Sci USA 91:5355-5358.
    Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen X, Lopes-Cendes I, Pearlman S, Starkman S, Orozoco-Diaz G, Lunkes A, DeJong P, Rouleau GA, Auburger G, Sahba S (1996) Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet 14:269-276.
    Ravikumar B, Duden R, Rubinsztein DC (2002) Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 11:1107-1117.
    Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O'Kane CJ, Rubinsztein DC (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36:585-595.
    Reid SJ, Rees MI, van Roon-Mom WMC, Jones AL, MacDonald ME, Sutherland G, During MJ, Faull RLM, Owen MJ, Dragunow M, Snell RG (2003) Molecular investigation of TBP allele length: A SCA17 cellular model and population study. Neurobiol Dis 13:37-45.
    Ren M, Leng Y, Jeong M, Leeds PR, Chuang D (2004) Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: Potential roles of histone deacetylase inhibition and heat shock protein induction. J Neurochem 89:1358-1367.
    Rolfs A, Koeppen AH, Bauer I, Bauer P, Buhlmann S, Topka H, Schöls L, Riess O (2003) Clinical features and neuropathology of autosomal dominant spinocerebellar ataxia (SCA17). Ann Neurol 54:367-375.
    Ryu H, Lee J, Olofsson BA, Mwidau A, Deodoglu A, Escudero M, Flemington E, Azizkhan-Clifford J, Ferrante RJ, Ratan RR (2003) Histone deacetylase inhibitors prevent oxidative neuronal death independent of expanded polyglutamine repeats via an Sp1-dependent pathway. Proc Natl Acad Sci USA 100:4281-4286.
    Schmidt T, Lindenberg KS, Krebs A, Schöls L, Laccone F, Herms J, Rechsteiner M, Riess O, Landwehrmeyer GB (2002) Protein surveillance machinery in brains with spinocerebellar ataxia type 3: Redistribution and differential recruitment of 26S proteasome subunits and chaperones to neuronal intranuclear inclusions. Ann Neurol 51:302-310.
    Seipel K, Georgiev O, Gerber H, Schaffner W (1994) Basal components of the transcription apparatus (RNA polymerase II, TATA-binding protein) contain activation domains: Is the repetitive C-terminal domain (CTD) of RNA polymerase II a "portable enhancer domain"? Mol Reprod Dev 39:215-225.
    Silveira I, Miranda C, Guimarães L, Moreira M-, Alonso I, Mendonça P, Ferro A, Pinto-Basto J, Coelho J, Ferreirinha F, Poirier J, Parreira E, Vale J, Januário C, Barbot C, Tuna A, Barros J, Koide R, Tsuji S, Holmes SE, Margolis RL, Jardim L, Pandolfo M, Coutinho P, Sequeiros J (2002) Trinucleotide repeats in 202 families with ataxia: A small expanded (CAG)n allele at the SCA17 locus. Arch Neurol 59:623-629.
    Sittler A, Lurz R, Lueder G, Priller J, Hayer-Hartl MK, Hartl FU, Lehrach H, Wanker EE (2001) Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of huntington's disease. Hum Mol Genet 10:1307-1315.
    Stevanin G, Hahn V, Lohmann E, Bouslam N, Gouttard M, Soumphonphakdy C, Welter ML, Ollagnon-Roman E, Lemainque A, Ruberg M, Brice A, Durr A (2004) Mutation in the catalytic domain of protein kinase C gamma and extension of the phenotype associated with spinocerebellar ataxia type 14. Arch Neurol 61: 1242-1248.
    Steffan JS, Bodai L, Pallos J, Poelman M, McCampbell A, Apostol BL, Kazantsev A, Schmidt E, Zhu Y, Greenwald M, Kurokawa R, Housman DE, Jackson GR, Marsh JL, Thompson LM (2001) Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in drosophila. Nature 413:739-743.
    Stevanin G, Fujigasaki H, Lebre A, Camuzat A, Jeannequin C, Dode C, Takahashi J, San C, Bellance R, Brice A, Durr A (2003) Huntington's disease-like phenotype due to trinucleotide repeat expansions in the TBP and JPH3 genes. Brain 126:1599-1603.
    Trushina E, McMurray CT (2007) Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Neuroscience 145:1233-1248.
    van de Warrenburg BP, Verbeek DS, Piersma SJ, Hennekam FA, Pearson PL, Knoers NV, Kremer HP, Sinke RJ (2003) Identification of a novel SCA14 mutation in a Dutch autosomal dominant cerebellar ataxia family. Neurology 61: 1760-1765.
    Wagstaff MJ, Collaco-Moraes Y, Smith J, De Belleroche JS, Coffin RS, Latchman, DS (1999) Protection of neuronal cells from apoptosis by HSPB1 delivered with a herpes simplex virus-based vector. J Biol Chem 274: 5061-5069.
    Warrick JM, Chan HYE, Gray-Board GL, Chai Y, Paulson HL, Bonini NM (1999) Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat Genet 23:425-428.
    Wellington CL, Hayden MR (2000) Caspases and neurodegeneration: On the cutting edge of new therapeutic approaches. Clin Genet 57:1-10.
    Wen F, Li Y, Tsai H, Lin C, Li C, Liu C, Lii C, Nukina N, Hsieh M (2003) Down-regulation of heat shock protein 27 in neuronal cells and non-neuronal cells expressing mutant ataxin-3. FEBS Lett 546:307-314.
    Wu YR, Lin HY, Chen CM, Gwinn-Hardy K, Ro LS, Wang JC, Li SH, Hwang JC, Fang K, Hsieh-Li HM, Li ML, Tung LC, Su MT, Lu KT, Lee-Chen GJ (2004) Genetic testing in spinocerebellar ataxia in Taiwan: expansions of trinucleotide repeats in SCA8 and SCA17 are associated with typical Parkinson's disease. Clin Genet 65:209-214.
    Wu YR, Fung HC, Lee-Chen GJ, Gwinn-Hardy K, Ro LS, Chen ST, Hsieh-Li HM, Lin HY, Lin CY, Li SN, Chen CM (2005) Analysis of polyglutamine-coding repeats in the TATA-binding protein in different neurodegenerative diseases. J Neural Transm 112:539-546.
    Wullner U (2003) Genes implicated in the pathogenesis of spinocerebellar ataxias. Drugs Today 39:927-937.
    Wyttenbach A, Sauvageot O, Carmichael J, Diaz-Latoud C, Arrigo A, Rubinsztein DC (2002) Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Hum Mol Genet 11:1137-1151.
    Yabe I, Sasaki H, Chen DH, Raskind WH, Bird TD, Yamashita I, Tsuji S, Kikuchi S, Tashiro K (2003) Spinocerebellar ataxia type 14 caused by a mutation in protein kinase C gamma. Arch Neurol 60: 1749-1751.
    Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, Dobyns WB, Subramony SH, Zoghbi HY, Lee CC (1997) Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet 15:62-69.
    Zuhlke C, Hellenbroich Y, Dalski A, Kononowa N, Hagenah J, Vieregge P, Riess O, Klein C, Schwinger E (2001) Different types of repeat expansion in the TATA-binding protein gene are associated with a new form of inherited ataxia. Eur J Hum Ggenet 9:160-164.

    下載圖示
    QR CODE