簡易檢索 / 詳目顯示

研究生: 陳萱庭
Chen, Alice Syuan-Ting
論文名稱: 超規模分佈式雲端數據中心之 NFV 平行流量感知部署演算法
An Algorithm of NFV Deployment on Hyperscale Distributed Cloud Data Centers Considering Lateral Flow Sensing
指導教授: 李忠謀
Lee, Greg c.
口試委員: 紀博文
Chi, Po-Wen
陳俊祥
Cheng, Chunhsiang
李忠謀
Lee, Greg C.
口試日期: 2021/12/30
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2021
畢業學年度: 110
語文別: 英文
論文頁數: 74
英文關鍵詞: Network Functions Virtualization, Software-Defined Networking, Cloud-native Container Network Function, Data Center Network
研究方法: Mathematical Analysis of Algorithms
DOI URL: http://doi.org/10.6345/NTNU202200042
論文種類: 學術論文
相關次數: 點閱:808下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Cloud services are burgeoning, the next distributed computing era and the next generation of hyperscale data centers are subverting the past. With the rise of Cloud Computing, Artificial Intelligence, and the Internet of Things, data centers have ushered in the third wave of upsurge. Since Network Functions Virtualization (NFV) was put forward by ETSI, NFV development has been highly concerned. Recent methods are becoming obsolete for dealing with the lateral flow in DCN, and attentions to lateral flow to date are also scant. In this research, we devise an algorithm, VIV3A, for hyperscale distributed cloud data centers. The novelty of our work lies not only in considering the new paradigm of lateral flow sensing on real topologies but also in demonstrating the hardness of NFVSED optimization by proof.

    Contents Contents iv List of Tables vi List of Figures vii 1 Introduction 1 1.1 NFV Data Center in the Cloud Era 1 1.2 Research Importance 2 1.3 Research Purpose 3 1.4 Research Question 3 1.5 Organization 4 2 Literature Review 5 2.1 Network Topologies of Data Center 5 2.2 Research in NFVSD Algorithm 6 3 Methodology 7 3.1  Formal Aspects 7 3.2  System Modeling 8 3.3  Problem Formulation 10 3.4  Proof of Hardness 12 3.5  Algorithm Design for NFVSED 16 3.5.1 Overview of Algorithm VIV3A 16 3.5.2 Target Topologies Applied in Algorithm VIV3A 16 3.5.3 The Intellectual Property Core of Algorithm VIV3A 17 4  Performance Evaluation 20 4.1  Simulation Configurations 20 4.2  Results and Analysis 21 4.2.1 Effects Compared with Prior Methods 21 4.2.2 Effects from Different DCN Topologies 24 5  Conclusions and Contributions 26 5.1 Conclusions 26 5.2 Contributions 26 5.3 Future Work 27 References 28 A Simulation Results 32 A.1  Prelude: Evaluation Metrics and Overview 32 A.2  Ablations in General Fettle 32 A.2.1 General Results with Algorithm Comparisons 32 A.2.2 General Results by DCN Topology Comparisons 38 A.3  Ablations in Extreme Fettle 39 A.3.1 Extreme Results with Algorithm Comparisons 39 A.3.2 Extreme Results by DCN Topology Comparisons 70

    [1] ETSI. “Network functions virtualisation (nfv).” (2012), [Online]. Available: https: //portal.etsi.org/nfv/nfv_white_paper.pdf.
    [2] ETSI. “Network functions virtualisation (nfv): Network operator perspectives on industry progress.” (2014), [Online]. Available: https://portal.etsi.org/Portals/ 0/TBpages/NFV/Docs/NFV_White_Paper3.pdf.
    [3] U. S. Government. “U.s. federal acquisition regulations.” (2017), [Online]. Available: https://web.archive.org/web/20170130041945/https://www.acquisition. gov/far/html/Subpart%202_1.html#wp1158534.
    [4] ETSI. “Network functions virtualiztion (nfv): Network operator perspectives on industry progress.” (2013), [Online]. Available: https://portal.etsi.org/NFV/ NFV_White_Paper2.pdf.
    [5] CNCF. “Cncf cloud native interactive landscape.” (2021), [Online]. Available: https: //landscape.cncf.io/.
    [6] E. A. Brewer, “Kubernetes and the path to cloud native,” in Proceedings of the sixth ACM symposium on cloud computing, 2015, pp. 167–167.
    [7] B. Dab, I. Fajjari, M. Rohon, C. Auboin, and A. Diquélou, “Cloud-native service function chaining for 5g based on network service mesh,” in ICC 2020-2020 IEEE International Conference on Communications (ICC), IEEE, 2020, pp. 1–7.
    [8] S. Garg, K. Kaur, G. Kaddoum, and S. Guo, “Sdn-nfv-aided edge-cloud interplay for 5g-envisioned energy internet ecosystem,” IEEE Network, vol. 35, no. 1, pp. 356– 364, 2021.
    [9] J. Liu, H. Xu, G. Zhao, C. Qian, X. Fan, and L. Huang, “Incremental server deployment for scalable nfv-enabled networks,” in IEEE INFOCOM 2020-IEEE Conference on Computer Communications, IEEE, 2020, pp. 2361–2370.
    [10] G. Sallam and B. Ji, “Joint placement and allocation of virtual network functions with budget and capacity constraints,” in IEEE INFOCOM 2019-IEEE Conference on Computer Communications, IEEE, 2019, pp. 523–531.
    [11] X. Fei, F. Liu, H. Xu, and H. Jin, “Adaptive vnf scaling and flow routing with proactive demand prediction,” in IEEE INFOCOM 2018-IEEE Conference on Computer Communications, IEEE, 2018, pp. 486–494.
    [12] L. Gu, X. Chen, H. Jin, and F. Lu, “Vnf deployment and flow scheduling in geo- distributed data centers,” in 2018 IEEE International Conference on Communications (ICC), IEEE, 2018, pp. 1–6.
    [13] S. Agarwal, F. Malandrino, C.-F. Chiasserini, and S. De, “Joint vnf placement and cpu allocation in 5g,” in IEEE INFOCOM 2018-IEEE Conference on Computer Communications, IEEE, 2018, pp. 1943–1951.
    [14] Y. Sang, B. Ji, G. R. Gupta, X. Du, and L. Ye, “Provably efficient algorithms for joint placement and allocation of virtual network functions,” in IEEE INFOCOM 2017-IEEE Conference on Computer Communications, IEEE, 2017, pp. 1–9.
    [15] X. Zhang, C. Wu, Z. Li, and F. C. Lau, “Proactive vnf provisioning with multi- timescale cloud resources: Fusing online learning and online optimization,” in IEEE INFOCOM 2017-IEEE Conference on Computer Communications, IEEE, 2017, pp. 1–9.
    [16] H. Feng, J. Llorca, A. M. Tulino, D. Raz, and A. F. Molisch, “Approximation algorithms for the nfv service distribution problem,” in IEEE INFOCOM 2017- IEEE Conference on Computer Communications, IEEE, 2017, pp. 1–9.
    [17] S. Herker, X. An, W. Kiess, S. Beker, and A. Kirstaedter, “Data-center architecture impacts on virtualized network functions service chain embedding with high availability requirements,” in 2015 IEEE Globecom Workshops (GC Wkshps), IEEE, 2015, pp. 1–7.
    [18] I. Bermudez, S. Traverso, M. Mellia, and M. Munafo, “Exploring the cloud from passive measurements: The amazon aws case,” in 2013 Proceedings IEEE INFOCOM, IEEE, 2013, pp. 230–234.
    [19] P.-W. Chi, Y.-C. Huang, and C.-L. Lei, “Efficient nfv deployment in data center net- works,” in 2015 IEEE International Conference on Communications (ICC), IEEE, 2015, pp. 5290–5295.
    [20] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center network architecture,” ACM SIGCOMM computer communication review, vol. 38, no. 4, pp. 63–74, 2008.
    [21] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma, S. Banerjee, and N. McKeown, “Elastictree: Saving energy in data center networks.,” in Nsdi, vol. 10, 2010, pp. 249–264.
    [22] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta, “Vl2: A scalable and flexible data center network,” in Proceedings of the ACM SIGCOMM 2009 conference on Data communication, 2009, pp. 51–62.
    [23] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu, “Bcube: A high performance, server-centric network architecture for modular data centers,” in Proceedings of the ACM SIGCOMM 2009 conference on Data communication, 2009, pp. 63–74.
    [24] D. Alger, The Art of the Data Center: A Look Inside the World’s Most Innovative and Compelling Computing Environments. Prentice Hall, 2012.
    [25] M. F. Bari, R. Boutaba, R. Esteves, L. Z. Granville, M. Podlesny, M. G. Rabbani, Q. Zhang, and M. F. Zhani, “Data center network virtualization: A survey,” IEEE communications surveys & tutorials, vol. 15, no. 2, pp. 909–928, 2012.
    [26] C. E. Leiserson, “Fat-trees: Universal networks for hardware-efficient supercomputing,” IEEE transactions on Computers, vol. 100, no. 10, pp. 892–901, 1985.
    [27] C. Clos, “A study of non-blocking switching networks,” Bell System Technical Journal, vol. 32, no. 2, pp. 406–424, 1953.
    [28] J. Hamilton, “An architecture for modular data centers,”
    [29] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “Dcell: A scalable and fault-tolerant network structure for data centers,” in Proceedings of the ACM SIGCOMM 2008 conference on Data communication, 2008, pp. 75–86.
    [30] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish: Networking data centers randomly,” in 9th USENIX Symposium on Networked Systems Design and Implementation (NSDI 12), 2012, pp. 225–238.
    [31] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: A hybrid electrical/optical switch architecture for modular data centers,” in Proceedings of the ACM SIGCOMM 2010 Conference, 2010, pp. 339–350.
    [32] C. Chekuri and S. Khanna, “On multi-dimensional packing problems,” in Proceedings of the tenth annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Citeseer, 1999, pp. 185–194.
    [33] V. V. Vazirani, Approximation algorithms. Springer Science & Business Media, 2013.
    [34] V. Kann, “Maximum bounded 3-dimensional matching is max snp-complete,” Information Processing Letters, vol. 37, no. 1, pp. 27–35, 1991.
    [35] M. R. Garey, R. L. Graham, D. S. Johnson, and A. C.-C. Yao, “Resource constrained scheduling as generalized bin packing,” Journal of Combinatorial Theory, Series A, vol. 21, no. 3, pp. 257–298, 1976.
    [36] W. F. De La Vega and G. S. Lueker, “Bin packing can be solved within 1+ ε in linear time,” Combinatorica, vol. 1, no. 4, pp. 349–355, 1981.
    [37] M. R. Garey and D. S. Johnson, Computers and intractability. freeman San Fran- cisco, 1979, vol. 174.
    [38] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, “Proof verification and the hardness of approximation problems,” Journal of the ACM (JACM), vol. 45, no. 3, pp. 501–555, 1998.
    [39] S. Mertens, “Number partitioning,” Computational Complexity and Statistical Physics, p. 125, 2006.

    無法下載圖示 電子全文延後公開
    2027/01/11
    QR CODE