簡易檢索 / 詳目顯示

研究生: 林于湘
Yu-Hsiang Lin
論文名稱: 電腦模擬用於評量可能導致的差異—從高中生的科學認識觀與性別來探討
指導教授: 黃福坤
Hwang, Fu-Kwun
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 114
中文關鍵詞: 電腦模擬科學認識觀性別差異高中自然組物理評量
英文關鍵詞: computer simulations, scientific epistemological views, gender difference, physical assessment
論文種類: 學術論文
相關次數: 點閱:228下載:53
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究從高中學生的科學認識觀(Scientific Epistemological Views)與性別差異這兩個角度,探討使用電腦模擬進行評量可能導致的差異。受試者來自北、中區五所學校,共583位高二以上的自然組學生。研究使用Tsai & Liu所研發之「多向度科學認識觀問卷」,以五個向度測量學生的科學認識觀,並以「建構主義」和「實徵主義」對科學知識的看法,來描述不同的觀點。本研究發現,高中自然組學生的科學認識觀頗為一致,平均傾向建構觀點,男女生觀點並無差異。
    另外本研究設計「一維直線運動線上測驗(ODMOT)」用以評量學生之物理成就表現,此測驗中包含兩種不同試題形式,分別是以文字或靜態圖表呈現的「傳統試題」和以電腦模擬呈現、可供操作的「模擬試題」。研究發現,男生在傳統、模擬試題上的平均得分均高於女生,但當以總分為根據將學生再區分高、中、低三組來比較男女差異,則兩性的得分差異消失,此結果顯示男女生都有能力拿到相同的高分,也可能得到相同的低分;而男女生在這兩種試題形式上的得分差異,其實是來自於人數分佈比例,本研究發現男生本身在高分組的人數分佈比例比低分組高出許多,而女生則是相反狀況。
    本研究將科學認識觀問卷分別依照總分與各向度的得分,把前15%的學生歸類為「建構組」,分數後15%為「實徵組」,用以比較科學認識觀和ODMOT的結果。研究發現,這兩組學生在ODMOT的得分幾乎沒有差異;但若比較兩組中男女學生的表現,可發現「實徵組」比「建構組」被檢查出較多的性別差異,並且差異較多表現在「模擬試題」部分,亦即非傳統的「模擬試題」比較容易檢查出性別差異。另外以不同答題型態將ODMOT區別成「概念答題」、「圖表答題」和「計算答題」三種,本研究發現男生在「圖表答題」與「計算答題」(屬於較高階的題目)的分數高過女生,並且也是「實徵組」的男女生被檢查出的差異次數比「建構組」多。
    本研究針對使用電腦模擬無法評量出「建構組」與「實徵組」的學習差異作討論,期待日後的研究者可繼續嘗試搭配電腦模擬,發展不限時、需要反思、統整能力的評量方式,進一步評量學生的高階能力,也使建構組的學生能夠展現其特質及學習成效。接著提出若學生的科學認識觀為建構觀點,則可能因此改善男女生在科學成就上的差異;因此建議物理教師在課堂中,使用合適的教學活動(如小組討論)與教學內容(如科學史哲),培養建構的科學認識觀點,藉此拉近男女生之間的差異。

    Computer simulations have been used as science teaching or a learning tool. This study is interested in using computer simulations as an assessment tool. We tried to relate the outcome to students’ scientific epistemological views (SEVs), gender difference. There were 583 eleventh or twelfth graders who are interested in the nature science related field joining the study. A multi-dimensions questionnaire, in five dimensions and 35 items, developed by Tsai & Liu was used to assess students’ SEVs.
    An “one-dimension motion online test (ODMOT)” was developed to assess students’ physical performance. There are two different types of questions (traditional questions and simulation questions) in ODMOT. Traditional questions were text-based which might include some static diagrams. Simulation questions require students to do operation on the computer screen to answer those questions. On average, we found boys gaining higher scores than girls. However, if we sub-divided boys and girls into higher, middle and lower score groups. There were no gender differences in each of those sub-groups. It indicated that girls as well as boys are capable of getting the same high score or low score. However, there were higher percentage of boys in the higher-score group, less percentage of girls in the lower-score group, and the percentage of the middle-score group was almost the same for both boys and girls. It is the distribution of boys and girls in different grade group that creates the gender differences.
    Students were categorized into three groups based on their total scores of all SEV subscales. Students who scored top 15% could be viewed as a “constructivist-oriented group”. Students who could be viewed as a relatively “positivist-aligned group”, had the bottom 15% scores, others were labeled as “average group”. We compared the ODMOT score between “constructivist-oriented group” and “positivist-aligned group”. There is no significant difference in ODMOT scores for students with different SEVs. However, there are gender differences among positivist-aligned group students, especially for scores belonging to simulation questions. ODMOT questions were divided into conceptual, diagram and computational types. We found, boys do better than girls both in diagram and computational questions (higher-level questions). For students in positivist-aligned group, the gender difference becomes even larger. For students with constructivist-oriented orientations, there are less gender differences. We suggest science teachers could develop appropriate pedagogy (e.g. group discuss) or instruction (e.g. introduce history and philosophy of science) to improve the SEVs of students, in order to reduce the gender difference.

    中文摘要........................................................................................................................I 英文摘要.......................................................................................................................II 目 次......................................................................................................................III 表 次.......................................................................................................................V 圖 次...................................................................................................................VIII 第一章 緒論   第一節 研究背景與動機....................................................................................1   第二節 研究目的與問題....................................................................................3   第三節 研究假設與限制....................................................................................4   第四節 名詞解釋................................................................................................5 第二章 文獻回顧   第一節 科學認識觀與學習................................................................................7   第二節 性別與科學成就..................................................................................14 第三節 電腦模擬..............................................................................................22 第四節 總結......................................................................................................25 第三章 研究方法與工具   第一節 研究方法與樣本..................................................................................27   第二節 研究工具與設計..................................................................................29   第三節 研究流程的進行..................................................................................38   第四節 資料處理與分析..................................................................................39 第四章 研究結果   第一節 科學認識觀..........................................................................................41   第二節 一維直線運動線上測驗......................................................................50   第三節 科學認識觀與一維直線運動線上測驗..............................................59 第五章 結論與建議   第一節 結論......................................................................................................83   第二節 建議......................................................................................................88 參考文獻   一、中文部分.......................................................................................................92   二、英文部分.......................................................................................................94 附錄一 多向度科學認識觀點問卷........................................................................101 附錄二 一維直線運動線上測驗題目....................................................................103 附錄三 主成分因素分析結果對照表....................................................................112 附錄四 ODMOT難易度0.4~0.7,鑑別度<0.3試題之男女得分與比較.........114

    一、中文部分
    王澄霞(1995):STS 活動中之「學」與「教」。科學教育學刊,3(1),115-137。
    王鼎銘(1997):動畫影像科技在教育上之應用及未來發展,資訊與教育雜誌,57,24-28
    朱錦鳳(1997):教學電腦模擬的必備要件及注意事項,媒體製作與應用,31,49-53。
    吳心楷(1997):科學學習相關的認知能力與認知風格之性別差異探討。科學教育月刊,204, 16-23。
    李美枝、鍾秋玉(1997):性別與性別角色析論。本土心理學研究,6,260-299。
    邱美虹、陳英嫻(1995):月相盈虧之概念改變,師大學報,40,509。
    林宜汶(2005):中部地區科學主修大學生的科學認識觀調查。國立彰化師範大學科學教育研究所碩士論文。
    孫振清(1994):知識論。台北:五南出版社。
    徐正和(2002):以模擬動畫作為高中物理科課後輔助學習之個案分析研究。國立高雄師範大學物理學系碩士論文。
    姜志忠(2005):物理史融入教學對於高中生科學認識觀與學習取向影響之研究。國立彰化師範大學科學教育研究所博士論文。
    郭生玉(1985):心理與教育測驗。精華書局。
    許榮富(1989):資料處理及下結論技能之評量模式分析研究。師大學報,34,219-262。
    莊佩珍(1994):資優女性的生涯發展及其相關因素之研究。國立彰化師範大學特殊教育學系碩士論文。
    莊雅茹(1996):CAL軟體電腦動畫應用與學習成效分析。視聽教育雙月刊,38(2),9-16。
    張靜嚳(1996):何謂建構主義。建構與教學,3,彰化師大科教中心。
    湯清二(1987):國中學生生物科學習因素與其科學態度和學習成就之關係。教育學院學報,12,451-471。
    黃福坤(1999):資訊素養與教學─以物理教學示範實驗教室輔助教學網站為例。圖書館學與資訊科學,25(2),53-62。
    楊榮祥(1992):1992國際數理教育評鑑IAEP-我們能夠學到什麼。科學教育月刊,149,2-31。
    楊龍立(1991):中小學生在科學成就及對科學的態度中性別差異的探討。國立臺灣師範大學教育研究所博士論文。
    楊龍立(1996):男女學生科學興趣差異的評析。台北:文景。
    楊淑卿(2002):電腦資訊教育與性別差異之研究。台大婦女研究室。
    劉宏文(1996):建構主義的認識論觀點及其在科學教育上的意義。科學教育月刊,193,8-24。
    鄭秀芬(2002):高中生的波動概念探究與電腦輔助學習教材研製。國立台灣師範大學物理研究所碩士論文。
    謝進生(1996):電腦動畫在科技教育中的應用研究。中學工藝教育,29(7),26-31。
    蕭惠蘭(2004):高中女生性別意識、教育期望、科學成就對升大學選擇科系之影響研究。國立彰化師範大學教育研究所學校行政碩士班碩士論文。
    簡茂發(1975):國民中學才賦優異學生科學性向之研究,測驗年刊,22,52-57。
    臺北市國小高年級學生性別角色態度調查之研究報告。台北市性別平等教育網站http://w3.tp.edu.tw/gender/pro/webfile/projtct1/index.htm 2007/06/20

    二、英文部分:
    Abd–el –khalick , F. and Lederman, N. G. (2000). Improving science teachers' conceptions of the nature of science: a critical review of the literature. International Journal of Science Education, 22(7) , 665 – 701.
    Baek, Y.K. and Layne, B.H. (1988). Color, graphics, and animation in a computer-assisted learning tutorial lesson. Journal of Computer-Based Instruction, 15(4), 131-135.
    Baker, D.R. (1987). The influence of role-specific self-concept and sex-role indentity in career choices in science. Journal of Research in Science Teaching, 24 (8), 739-756.
    Benbow, C., & Stanley, J. (1980). Sex differences in mathematical ability: Facts or artifact? Science, 210, 1262-1264.
    Benbow, C., & Stanley, J. (1983). Sex differences in mathematical reasoning ability: More facts. Science, 222, 1029.
    Bloom, B.S. (1976). Human characteristics and school learning. Mcgraw-Hill Book Company.
    Carey, S., & Smith, C. (1993). On understanding the nature of science knowledge. Educational Psychologist, 28, 235-251.
    Cavallo, A.M.L. (1994). Do females learn biological topics by rote more than males? The American Biology Teacher, 56(6), 348
    Comber, L.C., & Keeves, J.P. (1973). Science education in nineteen countries. A Halsted Press.
    Deboer, G.E. (1986). Perceived science ability as a factor in the course selection of men and women in college. Journal of Research in Science Teaching, 23(4), 43-352.
    DES. (1989). Science at age 13: A review of APU survey findings 1980-1984. HMSO.
    Dossey, J.A., Mullis, I.V.S., Lindquist, M.M., & Chambers, D.L. (1988). The mathematics report card. Are we measuring up? Princeton, NJ: Educational Testing Service.
    Eccles, J., Adler, T.F., Futterman, R., Goff, S.B., Kaczala, C.M., Meece, J.L., & Midgley, C. (1985). In S.F. Chipman, L.R. Brush, & D.M. Wilson (Eds.), Women and mathematics: Balancing the equation. Hillsdale, NJ: Lawrence Erlbaum Associates.
    Fennema, E. (1984 ). Girls, women, and mathematics. In E. Fennema & M.J. Ayers (EDS.), Women and education: Equity or equality? Berkeley, CA: McCutchan.
    Fennema, E., & Sherman, J.A. (1977). Sex-related differences in mathematics achievement, spatial visualization, and affective factors. American Educational Research Journal, 4, 51-72.
    Fennema, E., & Sherman, J.A. (1978). Sex-related differences in mathematics achievement and other factors: A further study. Journal for Research in Mathematics Education, 9, 189-203.
    Fleming, M.L., & Malone, M.R. (1983). The relationship of student characteristics and student performance in science as viewed by meta-analysis research. Journal of Research in Science Teaching, 20(5), 481.
    Galili, I., & Hazan, A. (2001). The effect of a history-based course in optics on students' views about science. Science & Education, 10, 7-32.
    Gallagher, J.J. (1987). A summary of research in science education 1985. Science Education, 71(3), 277-284.
    Gallagher, J.J. (1991). Prospective and practicing secondary school science teachers' knowledge and beliefs about the philosophy of science. Science Education, 75(1), 121-133.
    Gardner, P.L. (1975). Attitudes to science: A review. Studies in Science Education, 2, 1-41.
    Guba, E.G., & Lincoln, K.S. (1989). Fourth generation evaluation. Newbury Park, CA: Sage.
    Hammer, D. (1994). Epistemological beliefs in introductory physics. Cognition and Instruction, 12(2), 151-183.
    Handley, H..M.., & Morse, L.W. (1984). Two-year study relating adolescent's self-concept and gender role perceptions to achievement and attitudes toward science. Journal of Research in Science Teaching, 21(6), 599-607.
    Harty, H., Samuel, K.V., & Beall, M. (1986). Exploring relationships among four science teaching-learning affective attributes of sixth grade students. Journal of Research in Science Teachng, 23(1), 51-60.
    Hazari, Z., Tai R. H., & Sadler, P. M. (2007). Gender differences in introductory university physics performance: The influence of high school physics preparation and affective factors. Science Education, published online.
    Hilton, T. L., & Berglund, G.W. (1974). Sex differences in mathematics achievement: A longitudinal study. Journal of Educational Research, 67, 231-237.
    Hofer, B. K. (2001). Personal epistemology research: implications for learning and teaching. Educational Psychology Review, 13, 353–382.
    Hogan, K. (2000). Exploring a process view of students' knowledge about the nature of science. Science Education, 81(1), 51-70.
    Ignatz, M. (1982). Sex differences in predictive ability of tests of structure-of-intellect factors relative to a criterion examination of high school physics achievement. Educ. Psy. Meas., 42, 353.
    Jacobs L. C. & Chase C. I. (1992). Developing and using tests effectively :A guide for faculty. San Francisco, CA: Jossey-Bass, 168-177.
    Kahle, J. B. (1982). Can positive minority attitudes lead to achievement gains in science? Analysis of the 1977 National Assessment of Education Progress toward science. Science Education, 66(4), 539-546.
    Lantz, A.E., & Smith, G.p. (1981). Factors influencing the choice of nonrequired mathematics courses. Journal of Educational Psychology, 73, 825-837.
    Lloyd P. Rieber (1994) ,Computers ,Graphic ,&Learning , http://www.nowhereroad.com/cgl/request.html 2007/06/20
    Lord, T.R. (1985). Enhancing the visuo-spatial aptitude of students. Journal of Research in Science Teaching, 22(5), 395-405.
    Maccoby, E., & Jacklin, C. (1974). The psychology of sex differences. Stanford, CA: Stanford University Press.
    Matthews, M.R. (1993). Constructivism and science education: Some epistemological problems. Journal of Science Education and Technology, 2(1), 359-370.
    Matthews, W. (1980). Adding up race and sex: A study of enrollment in high school mathematics classes. Paper presented at the Program on Women, Northwestern University, Chicago.
    Mayer, E., & Anderson, R. (1991). Animations need narrations: An experimental test of a dual-coding hypothesis. Journal of Educational Psychology, 83(4), 484-490.
    Mayer, R. E., & Sims, V. K. (1994). For whom is a picture worth a thousand words? Extensions of a dual-coding theory of multimedia learning. Journal of Educational Psychology, 86, 389–401.
    Mccomas, W.F., & Olson, J. (1998). The nature of science in international science education standards documents. In W.F. McComas (Ed.), The Nature of science in science education: Rationales and strategies, 41-52. Boston: Kluwer Academic Publishers.
    Mcguffinn S.J. (1983). Science at O Level: subject choice and achievement. Research in Science & Technological Education, 1(1), 83-87.
    Mchaney, R.(1999). Integration of the genetic algorithm and discrete-event computer simulation for decision support. Simulation (SanDiego, Calif.), 72(66), 401-411.
    Mitchell, H.E., & Simpson, R.D. (1982). Relationships between attitude and achievement among college biology students. Journal of Research in Science Teaching, 19(6), 459-468.
    Moser, P.K., Mulder, D.H., & Trout, J.D. (1998). The theory of knowledge: A thematic introduction. New York: Oxford University Press.
    Mullis, I.V.S., & Jenkins, L. B. (1988). The science report card: Elements of risk and recovery. Princeton, NJ: Educational Testing Service.
    Murphy, R.J.L. (1978). Sex differences in examination performance: do these reflect differences in ability or sex-role stereotypes? Eductional Review, 30, 259-263.
    Noble, K.D. (1989). Counseling gifted women: Becoming the heroes of our stories. Journal for the Education of the Gifted, 12(2), 131-141.
    Novak, J.D. (1999). Utilization of new knowledge about the nature of human learning, Retrived 1999, http://www.scholars.psu.edu/innovations2000/ka-novak.htm. 2007/06/20
    Oakes, J. (1990).Opportunities, achievement, and choice: Women and minority students in science and mathematics. Review of Research in Education, 16, 153-222.
    Pell, A. (1985). Enjoyment and attainment in secondary school physics. British Educational Research Journal, 11(2), 123-132.
    Peterson, R.W., & Carlson, G.R. (1979). A summary of research in science education 1977. Science Education, 63(4).
    Reis, S.M.(1991). The need for clarification in research designed to examine gender differrences in achievement and accomplishment. Roeper Review, 13, 193-198.
    Roth, W.M. (1994). Physic student’s epistemologies and views about knowing and learning. Journal of Research in Science Teaching, 31, 5-30.
    Ryan, A.G., & Aikenhead, G.S. (1992). Students' preconception about the epistemology of science. Science Education, 76(6), 559-580.
    Saunders, G.L., Cavallo, A., & Abraham, M.R. (1999). Relationship among epistemological beliefs, gender, approach to learning, and implementation of instruction in chemistry laboratory. Paper presented at the National Association for Research in Science Teaching, Boston, M A.
    Schibeci, R.A. (1984). Attitudes to scienc: An update. Science Education, 11, 26-59.
    Schibeci, R.A., & Riley, J.P. (1986). Influence of student's background and perceptions on science attitudes and achievement. Journal of Research in Science Teaching, 23(3), 177-188.
    Schoenfeld, A. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. In D.A. Grouws (Ed.), Handbook of research on mathematics teaching and learning, 334-370. New York: Macmillan.
    Schommer, M., & Walker, K. (1995). Are epistemological beliefs similar across domains? Journal of Educational Psychology, 87, 424-432.
    Schommer, M., Crouse, A., & Rhodes, N. (1992). Epistemological beliefs and comprehension: Believing it is simple does not make it so. Journal of Educational Psychology, 84(4), 435-443..
    Sellers, B.A. (1981). An analysis of the relationship of students' self concepts in science and their science achievement, mental ability and gender. Science Education Research. (ED207806)
    Sherman, J.A. (1980). Mathematics, spatial visualization, and related factors: Changes in girls and boys, grades 8-11. Journal of Educational Psychology, 72, 476-482.
    Simpson, R.D., & Oliver, A.J.S. (1990). A summary of major influences on attitude toward and achievement in science among adolescent students. Science Education, 74(1), 1-18.
    Simpson, R.D., & Troost, K.M. (1982). Influences on commitment to and learning of science among adolescent students. Science Education, 66(5), 763-781.
    Solomon, J. (1994). Learning STS and judgments in the classroom: do boy and girls differ? In J. Solomom ang G. Aikenhead (eds) STS education: International perspectives on reform. New York: Teachers College Press, 141-154.
    Songer, N.B., & Linn, M.C. (1991). How do students’ views of influence knowledge integration? Journal of Research in Science Teaching, 28 , 761-784.
    Stobart, G., Elwood, J., & Quinlan, M. (1992). Gender bias in examinations: how equal are the opportunities? British Educational Research Journal, 18(3), 261-276.
    Strike, K. A., & Posner, G. J. (1992). A revisionist theory of conceptual change. In Richard A. Duschl & Richard J. Hamilton (eds) Philosophy of science, cognitive, psychology, and educational theory and practice. Albany: State University of New York Press. 147-176.
    Tai, R. H., & Sadler, P. M. (2001). Gender differences in introductory undergraduate physics performance: university physics versus college physics in the USA. International Journal of Science Education, 23(10), 1017-1037.
    Tsai, C.C. (1996). The "qualitative" differences inproblem-solving procedures and thinking structures between science and nonscience majors. School Science and Mathematics, 96, 283-289.
    Tsai, C.C. (1998a). An analysis of Taiwanese eight grades' science achievement, scientific epistemological beliefs and cognitive structure outcomes after learning basic atomic theory. International Journal of Science Education, 20(4), 413-425.
    Tsai, C.C. (1998b). An analysis of scientific epistemological beliefs and learning orientation of Taiwanese eighth grades. Science Education, 82(4), 473-489.
    Tsai, C.C. (1999). The progression toward constructivist epistemological views of science: A case study of the STS instruction of Taiwanese high school female students. International Journal of Science Education, 21(11), 1201-1222.
    Tsai, C.C. (2000). Relationships between student scientific epistemological beliefs and perceptions of constructivist learning environments. Educational Research, 42, 193–205.
    Tsai, C.C. (2004). Information commitments in web-based learning environments. Innovations in Education and Teaching International, 41, 105-112.
    Tsai, C.C., & Liu, S.Y. (2005). Developing a multi-dimensional instrument for assessing students’ epistemological views toward science. International Journal of Science Education, 27(13), 1621–1638.
    Walding, R. et al. (1994). Gender differences in reasons to questions on the Australian National chemistry quiz. Journal of Research in Science Teaching, 31(8), 833-846.
    Weltner, K. et al. (1980). Interest of intermediate-level secondary students in physics and technology. European Journal of Science Education, 2(2), 183-189.
    Willson, V.L. (1983). A meta-analysis of the relationship between science achievement and science attitude:kindergarden through college. Journal of Research in Science Teaching, 20(9), 839-850.
    Windschitl, M., & Andre, T. (1998). Using computer simulations to conceptual change: The role of constructivist instruction and student epistemological beliefs. Journal of Research in Science Teaching, 35(2), 145-160.
    Zimmerer, L.K., & Bennett, S.M. (1987). Gender differences on the California statewide assessment of attitudes and achievement in science. Paper presented at the annual meeting of the American Educational Research Association, Washington, DC.

    QR CODE