研究生: |
陳玉玲 Chen Yu Ling |
---|---|
論文名稱: |
國際化學奧林匹亞競賽(IChO)歷屆實作試題三大層級的界定與詮釋之的研究 |
指導教授: |
方泰山
Fang, Tai-Shan |
學位類別: |
博士 Doctor |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 中文 |
論文頁數: | 151 |
中文關鍵詞: | 國際化學奧林匹亞 、科學過程技能 、實作評量 |
英文關鍵詞: | IChO, Science process skills, proformance assement |
論文種類: | 學術論文 |
相關次數: | 點閱:197 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究分為兩部份,第一部份為分析歷屆國際化學奧林匹亞競賽實作部份的試題。得到結果如下:
1. 根據化學的專業領域將實作試題分為無機定性分析實驗、有機定性分析實驗、定量分析實驗、有機及無機化合物的合成及其他實驗此五類,其中以定量分析實驗所佔比例最高,為37%、無機定性分析實驗為22%、有機及無機化合物的合成為16%、其他實驗為14%、有機定性實驗佔11.11%。
2. 根據實作試題的限制程度、結構度等將試題分為定義清楚、定義模糊以及沒有定義三種類型。定義清楚類型試題佔83%、定義模糊類型試題佔8.5%、沒有定義類型試題佔8.5%。
3. 實作試題評量的內容以基本科學過技能為主,統整科學過技能15%。
第二部份為以38位選修普化實驗的學生為研究對象,研究定義清楚及沒有定義這兩種不同實作試題,對學生的實驗結果影響。學生的實驗結果與學生的統整科學過程技能之關係性。實驗試題分為A、B兩卷,實驗組使用沒有定義類型試題的A卷,控制組使用定義清楚類型試題的B卷。根據兩組學生的實驗成績,與統整科學過程技能的成績比較。本研究的主要結果如下:
1. 實驗組與控制組學生的統整科學過程技能未達到顯著差異(p<.05)。
2. 實驗組與控制組學生的實驗成績達到顯著差異(p<.05)。
3. 實驗組學生的實驗成績與統整科學過程技能的相關度大於控制組學生的實驗成績與統整科學過程技能的相關度。
4. 實驗組學生的實驗成績與統整科學過程技能的相關度大於上學期普化實驗學期成績與統整科學過程技能的相關度。
5. 實驗組學生的實驗成績與下操作型定義及確認變因的相關度大於控制組學生的實驗成績與下操作型定義及確認變因的相關度。
6. 實驗組學生的實驗成績與設計實驗、數據及圖型解釋及確認可驗證的假說低於控制組學生的實驗成績與設計實驗、數據及圖型解釋及確認可驗證的假說的相關度。
根據本研究結果,研究者建議未來國際化學奧林匹亞舉辨國在命題時,針對實作部份試題,除了可以評量學生的實作能力的化合物合成類型的實作試題外,應該再增加一題與學生統整科程技能相關性較高的沒有定義類型實作試題,以期所選拔出來的學生不只是具備化學的專業能力,更具有解決真實生活中問題的能力,最終希望這些學生在未來能對於化學有卓越的貢獻,相信這也是國際化學奧林匹亞在舉行時的目的之一。
This research is divided into two parts. Firstly, the relationship between science process skills and types of practice tasks in 24th~34th International Chemistry Olympiad (IChO) practice tasks was explored. The results are as follows:
1. Base on the chemical system, practice tasks were divided into five types of experiments: inorganic qualitative analysis, organic qualitative analysis, quantitative analysis, synthesis of organic and inorganic compound and other else experiment. The percentage of quantitative analysis in total tasks is the highest 37%; inorganic qualitative analysis comes the next, 22%; synthesis of organic and inorganic compound is to 16%; other else experiments, 14%; and then, organic qualitative analysis, 11.11%.
2. Base on the degree of limitation and structure of practice tasks was divided into three types: clear definition, misty definition and no definition. There are nineteen practice tasks with clear definition (about 83%), two questions with misty definition (about 8.5%), two questions with no definition about (8.5%). in 24th~34th IChO
3. The basic science process skills take the mainly part in 24th~34th IChO practice tasks, but the integrated process skills only take 15%.
Secondly, research from two kind of practice types: How the practice task with clear definition and task with no definition influences the student’s achievement in performance? What is relation between student’s achievement in practice task and the integrated process skills? There are thirty-eight students who took general chemical laboratory course divided into two groups: A and B. A is the experimental group, using the examination with no definition type. B is the controlling group, using the examination with clear definition. In comparison of the score of two groups ‘ practice task with that of the integrated process skills, the results are as follows:
1. In the integrated process skills, there are no obvious differences between experimental group and controlling group. (p<.05)
2. The score of experimental group and that of controlling group is quite different each other. (p<.05).
3. The score of experimental group is more related than that of controlling group in integrated process skill.
4. The score of experimental group is more related than that of last semester’s performance of general chemical laboratory in integrated process skill.
5. The score of experimental group is more related than that of controlling group in the operational definition and the identifying variables.
6. The score of experimental group is less related than that of controlling group in experimental design、data and graph interpretation and identifying testable hypotheses.
According to the results of this work, we suggest that the country who organizes the IChO can set one practice task of compound synthesis type which can be employed to assess a student’s operational skill in experiment and another one of no definition type which can assess a student’s integrated process skill in experiment in the future. This kind of combination of practice tasks should be used with hope that the students we selected have not only highly professional knowledge in chemistry but also the ability to solve the problems in daily life. May these students do some thing outstanding in chemistry for future career.
一. 中文部份:
丹尼爾.高曼著,張美惠譯(民85)。EQ. 臺北:時報出版社。
王文中、呂金燮、吳毓瑩、張郁雯、張淑慧合著(民88)。教育測驗與評量–教室學習觀點。五南圖書出版公司。
方泰山(民88)。第一屆至第三十屆(民國57~87年)國際化學奧林匹亞競賽試題(中文版)。國立台灣師範大學化學系。化學研究所主編。
王澄霞(民86)。科學科之教學與評量標準。國立編譯館通訊,10(1),39
何寶珠(民78)。心理學與哲學在科學教育上的應用–概念圖與V圖的理論、製作與應用。科學教育月刊,120期,16-24。
何寶珠(民79)。科學過程技能教學活動對國一學生之影響: 科學過程技能成就水準。國立臺灣師大學化學研究所碩士論文。
邱美虹、湯偉君(民89)。美國新標準:科學實作評量之內涵與範例介紹。科學教育月刊,233,2-18。
林幸台(民84)。我國資優學生鑑定制度之研究。國科會專案研究報告。
林俊華(民75)。國中科學過程技能學習成就之調查研究。國立臺灣師大學物理研究所碩士論文。
吳清山、林天祐,王文中。(民88)http://www.jhes.km.edu.tw/%A4%E5%C4m/%B5%FB%B6q/%B9%EA%A7@%B5%FB%B6q.html吳慧珍(民89)。國立臺灣師範大學地球科學研究所。探討學生透過網際網路進行合作學習對其科學過程技能的影響。
陳文典、陳義勳、李虎雄、簡茂發(民85)。由馬里蘭州的學習成就評量與其在台灣的施測結果看–實作評量的功能與運用。教育部國民教育司。
陳文典(民87)。實作評量在學力測驗之應用。測驗與輔導,150,3108。
陳怡宏(民86)。教導式簡易實驗在教學上應用之研究。國立臺灣師大學化學研究所碩士論文。
郭靜姿(民83)。資優學生多元鑑定工具對於學業成就表現之預測效度研究。國科會八十三年專題研究報告。
郭靜姿(民84)。國中資優學生鑑定工具與方法之有效性分析。國科會八十四年專題研究報告。
郭靜姿(民85)。資賦優異學生的鑑定與教育安置。教育資料集刊,21輯,1-18頁。
葉重新(民88)。教育研究法。心理出版社。
張華傑(民89)。不同評量模式的評量效果。國立臺灣師大學物理研究所碩士論文。
熊召弟(民85)。臺北公立高中(高一)學生科學過程技能和邏輯思能力之探討研究。臺北師院學報,第九期,545-578。
劉哲淵(民89)。國際化學奧林匹亞競賽(IChO)原命題建構與我國學生實作風格之研究。國立臺灣師大學化學研究所碩士論文。
鄭碧雲(民79)。國中資賦優異學生科學過程技能與其相關因素之研究。國立彰化師範大學科學教育研究所碩士論文。
龍慧真(民91)。學生繪製V圖對國二理化實驗教學之影響。國立臺灣師大學科學教育研究所碩士論文。
魏明通(民88)。科學教育。五南圖書出版公司。
二. 英文部份:
Benbow, C. P. (1986). SMPY’s Model for teaching Mathematically precocious students. In J. S. Renzulli(Ed.). Systems and models for developing programs for the gifted and talented. Conn.: Creative Learning.
Berger, C. F. (1982). Attainment of skill in using science process. I. Instrumentation, methodology and analysis. Journal of Research in Science Teaching, 19, 249-260.
Burns, J. C., Wise, K. C., & Okey, J. R. (1985). Development of an integrated science process skills test:TIPSⅡ. Journal of Research in Science Teaching, 22, 169-177.
Campione, J. C., & Brown, A. L. (1990). Guided learning and transfer: Implications for approaches to assessment. In N. Frederiksen, R. Glaser, A. Lesgold, and M. G. Shafto (Eds.), Diagnostic monitoring of skill and knowledge acquisition. 141-172. Hillsdale, NJ: Lawrence Erlbuam Associates.
Crocker, R. K. et al., (1976) A comparison of structured and unstructured modes of teaching science process activities. Journal of Research in Science Teaching, 13(3), 267-274.
Feldhusen, J. F. & Jarwan, F. A. (1993). Identification gifted and talented youth for educational programs. In K. A. Heller; F. J. Monks & A. S. Passow(Eds.), International Handbook of Research and Development of Giftedness and Talent. 233-251, Oxford: Pergamon.
Finley, F. N., (1983) Science process. Journal of research in science teaching, 20(1), 47-54.
Frances L., Douglas H., Wayne W., (2001). The Science Achievement ofl Various Subgroups on Alternation Assement Formats. Science Education, 85, 279-290.
Gagne, F. (1983). Giftedness and talent; Rexxamining a reemamnation of and talent; Rexamining a reexamination of the definitions. Gifted Child Quarterly, 29, 103-112.
Gardner, H. (1983). Frame of mind: The theory of multiple intelligence. NY: Basic Books.
Gardner, H. (1992). The unschooled mind. NY: Basic Books.
Gardner, H. (1993). Multiple intelligence. NY: Basic Books.
Guilford, J. P. (1965). Three faces of intellect. American Psychologist, 14, 469-479.
Hany, E. A. (1987). Models and strategies in the identification of gifted students. Ph. D. dissertation. University of Munich.
Hany, E. A. (1993). Methodolgical problems and issues concerning identification. In K. A. Heller; F. J. Monks & A. S. Passow (Eds.), International Handbook of Research and Development of Giftedness and Talent. 209-232. Oxford; Pergamon
Harnisch, D. L. (1994). Performance assessnent in View:New direction for assessing student understanding. International Journal of Educational Rrsearch, 21, 341-350.
Lesgold, A., & Lajoie, S. (1991). Complex problem solving in electronics. In R. J. Sternberg & P. A. French (Eds.), Complex problem solving: Principles and mechanisms. 287-316. Hillsdale, NJ: erlbaum.
Linn, r., & Gronlund, N. E. (1995). Measurement and assessment in teaching. (7th ed.). NJ: Prentice-Hall.
Lu, C. H., & Suen, H. K. (1995). Cognitive style and assessment approach. Journal of Educational Measurement, 32, 1-18.
Madaus, G., & Kellaghan, T. (1993). The British experience with ‘authentic’ testing. Phi delta kappa, 458-469.
Mattheis, F. E. (1986). A study of the logical thinking skills of junior high school students in North Carolina and Japan. The World Council for Curriculum and Instruction’s Fifth Triennial World Conference of on Education, Hiroshima Japan.
Messick, S. (1994). The interplay of evidence and consequences in the validation of per formance assessments. Educational researcher, 23(2), 13-24.
Moss, P. A. (1994). Can there be validity without reliability? Educational researcher, 23. 5-12.
Murphy, D. L. & Friedman, R. C. (1991). Using prediction methods: A better magic mirror. In N. K. Buchanan & J. F. Feldhusen (Eds.), Conducting research and evaluation in gifted education. 179-200. N. Y.: Teachers College.
Neie, V.E., Verbal predictive ability and performance on selected science process task. Journal of Research in Science Teaching, 1972, 9(3), 213-221.
Newmann, F. M., & Archbald, D. A. (1992). The nature of authentic academic achievement. In H. Berlak, F. M. Newmann, E. Adams, D. A. Archbald, T. Burgess, J. Raven, & T. A. Romberg (Eds.), Toward a new science of education testion and assessment. 71-84, Albany, NY: State University of New York Press.
Padilla, M. J. (1980). Science activities-for thinking. School Science and Mathematics, LXXX, 601-608.
Quellmalz, E. S. (1991). Developing criteria for performance assessments: The missing link. Applied measurement in education, 4, 347-362.
Snow, R. E. (1993). Construct validity and constructed-response tests. In R. E. Bennett & W. C. Ward (Eds.), Learning and individual differences: Advances in theory and research, 1993, 13-59. NY: Freeman.
Sternberg, R. J (1985). Beyond IQ, a triarchic theory of human intelligence. NY: Cambridge University Press.
Sternberg, R. J. & Davidson, J. E. (1986). Conceptions of giftedness. Cambrideg: Cambridge University Press.
Stiggins, R. J. (1994). Student-centered classroom assessment. NY: Macmillan College Publishing Company.
Swassing, R. H. (1985). Teaching gifted children and adolescents. Columbus, OH: Charles E. Merrill.
Terman, L. M. (1925). Mental and physical traits of a thousand gifted children. In L. M. Terman(Ed.), Genetic studies of genius (Vol.1). Stanford, CA: Stanford University Press.
Tobin, K. G. & Capie, W., The effects of formal reasoning ability, locus of control and student engagement on science process achievement. University of South Carolina, 1979, Conference in Educational Research.
Whitehead, A. N. (1929). The aims of education. Cambridge: Cambridge University Press.