研究生: |
林斯賢 Lin, Szu-Hsien |
---|---|
論文名稱: |
長葉木薑子蟲癭轉錄體之研究 Transcriptomic profiling of insect gall in Litsea acuminata |
指導教授: |
孫智雯
Sun, Chih-Wen 楊棋明 Yang, Chi-Ming |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 蟲癭 、長葉木薑子 、次世代定序 、轉錄體 、光合作用 、植物激素 、細胞壁 、植物防禦系統 |
英文關鍵詞: | insect gall, Litsea acuminata, next generation sequencing, transcriptome, photosynthesis, plant hormone, cell wall, plant defense system |
DOI URL: | https://doi.org/10.6345/NTNU202203615 |
論文種類: | 學術論文 |
相關次數: | 點閱:96 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
蟲癭(insect gall)是植物經過造癭昆蟲刺激後產生不正常增生組織。至今蟲癭的形成機制仍不明瞭。先前研究著重於分類學、動物學、生態學等,隨著次世代定序發展,使得探討基因表現等轉錄體研究也越快捷。本論文研究長葉木薑子(Litsea acuminata)蟲癭之轉錄體,以了解蟲癭的形成發育機制。研究蟲癭與其宿主葉基因表現差異,一共發現1,452個差異表現基因,其中包含細胞壁、植物激素代謝、植物逆境、光合作用、二次代謝、四吡咯生合成等類群。資料顯示蟲癭組織光合作用相關基因表現量降低,推測蟲癭組織無法提供足夠養分構築蟲癭結構或是提供造癭昆蟲,營養則可能由宿主葉而來,進而顯示植物組織從葉片轉變成蟲癭組織是一種營養流的改變,即從供源(source)轉變成積儲(sink)。本研究還發細胞壁相關基因表現上升,以及植物激素如油菜素類固醇、生長素與吉貝素相關基因表現上升,並推測上述幾種植物激素在蟲癭形成中可能扮演重要角色。造癭昆蟲不但誘導蟲癭構形還啟動植物防禦系統,如致病過程相關蛋白質(pathogenesis-related proteins, PR protein)基因表現上升,此可能誘發植物系統性誘導抗病機制(systemic acquired resistance)以阻礙病原侵入。
Insect galls are the abnormal growth of plant tissue induced by herbivore, bite or egg laying from insects. To date, the mechanisms of gall formation are still undetermined. Previous researches used taxonomical, zoological and ecological approaches to study insect galls. In this study the insect galls were investigated with the view of transcriptome. We collected cup-shaped galls on host leaves of Litsea acuminata, and characterized the differential gene expression between galls and its host leaves by using next generation sequencing and transcriptomic approaches. A total of 1,452 differentially expressed genes (DEGs) were found between insect gall and it host leaf. These DEGs are classified into functional category of cell wall, hormone metabolism, abiotic or biotic stress, photosynthesis, secondary metabolism, tetrapyrrole synthesis and so on. The data showed that the gall shift from a source (host leaves) to a sink (gall tissues) with decreased gene expression of photosynthetic-related genes. I also analyzed the cell wall synthesis and plant hormone like brassinosteroids, auxin and gibberellin. These hormones may play important role in gall development. Insects not only induce the structure of galls but also stimulate plant defense system. For example that increased expression of genes related to pathogenesis-related proteins (PR protein). They are induced as part of systemic acquired resistance (SAR) to resist disease.
林聖豐。2011。長葉木薑子葉片多型性蟲癭之造癭癭蚋生物系統分類。國立中興大學昆蟲學系碩士論文。
梁立明、楊淑燕、楊正澤、陳明義。1999。關刀溪森林生態系變葉新木薑子與長葉木薑子蟲癭之發育。林業研究季刊。Vol. 21。75-89頁。
陳昱潔。2016。長葉木薑子杯狀蟲癭捕光複合體分析。國立臺灣師範大學生命科學系碩士論文。
黃盟元。2011。Daphnephila屬癭蚋蟲癭之生態生理特性研究。國立臺灣師範大學生命科學研究所博士論文。
廖玲秀。2003。由大葉楠造癭木蝨Triozashuiliensis (Yang)探討造癭昆蟲的營養適應。國立中興大學昆蟲學系碩士論文。
Agarrwal, R., A.P. Padmakumari, J.S. Bentur, and S. Nair. 2016. Metabolic and transcriptomic changes induced in host during hypersensitive response mediated resistance in rice against the Asian rice gall midge. Rice (New York, N.Y.). 9:5.
Andersson, M.N., E. Videvall, K.K.O. Walden, M.O. Harris, H.M. Robertson, and C. Lofstedt. 2014. Sex- and tissue-specific profiles of chemosensory gene expression in a herbivorous gall-inducing fly (Diptera: Cecidomyiidae). BMC Genomics. 15:19.
Bailey, S., D.M. Percy, C.A. Hefer, and Q.C. Cronk. 2015. The transcriptional landscape of insect galls: psyllid (Hemiptera) gall formation in Hawaiian Metrosideros polymorpha (Myrtaceae). BMC Genomics. 16:943.
Baumberger, N., C. Ringli, and B. Keller. 2001. The chimeric leucine-rich repeat/extensin cell wall protein LRX1 is required for root hair morphogenesis in Arabidopsis thaliana. Genes & development. 15:1128-1139.
Berardini, T.Z., S. Mundodi, L. Reiser, E. Huala, M. Garcia-Hernandez, P. Zhang, L.A. Mueller, J. Yoon, A. Doyle, G. Lander, N. Moseyko, D. Yoo, I. Xu, B. Zoeckler, M. Montoya, N. Miller, D. Weems, and S.Y. Rhee. 2004. Functional Annotation of the Arabidopsis Genome Using Controlled Vocabularies. Plant Physiol. 135:745-755.
Brenner, S., M. Johnson, J. Bridgham, G. Golda, D.H. Lloyd, D. Johnson, S. Luo, S. McCurdy, M. Foy, M. Ewan, R. Roth, D. George, S. Eletr, G. Albrecht, E. Vermaas, S.R. Williams, K. Moon, T. Burcham, M. Pallas, R.B. DuBridge, J. Kirchner, K. Fearon, J.-i. Mao, and K. Corcoran. 2000. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotech. 18:630-634.
Chen, T.W., R.C. Gan, T.H. Wu, P.J. Huang, C.Y. Lee, Y.Y. Chen, C.C. Chen, and P. Tang. 2012. FastAnnotator- an efficient transcript annotation web tool. BMC Genomics. 13 Suppl 7:S9.
Depuydt, S., and Christian S. Hardtke. 2011. Hormone Signalling Crosstalk in Plant Growth Regulation. Current Biology. 21:R365-R373.
Dorchin, N., M.D. Cramer, and J.H. Hoffmann. 2006. Photosynthesis and sink activity of wasp-induced galls in Acacia pycnantha. Ecology. 87:1781-1791.
Draeger, C., T. Ndinyanka Fabrice, E. Gineau, G. Mouille, B.M. Kuhn, I. Moller, M.-T. Abdou, B. Frey, M. Pauly, A. Bacic, and C. Ringli. 2015. Arabidopsis leucine-rich repeat extensin (LRX) proteins modify cell wall composition and influence plant growth. BMC Plant Biol. 15:1-11.
Dreger-Jauffret, F., and J.D. Shorthouse. 1992. Diversity of gall-inducing insects and their galls. Oxford University Press, Oxford, New York etc. 8-33 pp.
Ellis, M., J. Egelund, C.J. Schultz, and A. Bacic. 2010. Arabinogalactan-proteins: key regulators at the cell surface? Plant Physiol. 153:403-419.
Ewing, B., and P. Green. 1998. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8:186-194.
Fujioka, S., and T. Yokota. 2003. Biosynthesis and metabolism of brassinosteroids. Annual review of plant biology. 54:137-164.
Gambino, G., I. Perrone, and I. Gribaudo. 2008. A Rapid and Effective Method for RNA Extraction from Different Tissues of Grapevine and Other Woody Plants. Phytochem. Anal. 19:520-525.
Gao, X., J.Y. Zhu, S. Ma, Z. Zhang, C. Xiao, Q. Li, Z.Y. Li, and G.X. Wu. 2014. Transcriptome profiling of the crofton weed gall fly Procecidochares utilis. Genet. Mol. Res. 13:2857-2864.
Giron, D., E. Huguet, G.N. Stone, and M. Body. 2016. Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host-plant. Journal of Insect Physiology. 84:70-89.
Griesser, M., N.C. Lawo, S. Crespo-Martinez, K. Schoedl-Hummel, K. Wieczorek, M. Gorecka, F. Liebner, T. Zweckmair, N.S. Pavese, D. Kreil, and A. Forneck. 2015. Phylloxera (Daktulosphaira vitifoliae Fitch) alters the carbohydrate metabolism in root galls to allowing the compatible interaction with grapevine (Vitis ssp.) roots. Plant Sci. 234:38-49.
He, L., and G.J. Hannon. 2004. MicroRNAs: small RNAs with a big role in gene regulation. Nature reviews. Genetics. 5:522-531.
Heath, M.C. 2000. Hypersensitive response-related death. Plant Mol.Biol. 44:321-334.
Huang, M.Y., H.M. Chou, Y.T. Chang, and C.M. Yang. 2014. The number of cecidomyiid insect galls affects the photosynthesis of Machilus thunbergii host leaves. J. Asia-Pac. Entomol. 17:151-154.
Huang, M.Y., W.D. Huang, H.M. Chou, C.C. Chen, P.J. Chen, Y.T. Chang, and C.M. Yang. 2015. Structural, biochemical, and physiological characterization of photosynthesis in leaf-derived cup-shaped galls on Litsea acuminata. BMC Plant Biol. 15:12.
Huang, M.Y., M.M. Yang, W.N. Jane, Y.T. Chang, and C.M. Yang. 2009. Insect-induced cecidomyiid galls deficient in light-harvesting protein complex II showing normal grana stacking. J. Asia-Pac. Entomol. 12:165-168.
Khajuria, C., C.E. Williams, M. El Bouhssini, R.J. Whitworth, S. Richards, J.J. Stuart, and M.-S. Chen. 2013. Deep sequencing and genome-wide analysis reveals the expansion of MicroRNA genes in the gall midge Mayetiola destructor. BMC Genomics. 14:1-11.
Kirchhoff, H., C. Hall, M. Wood, M. Herbstova, O. Tsabari, R. Nevo, D. Charuvi, E. Shimoni, and Z. Reich. 2011. Dynamic control of protein diffusion within the granal thylakoid lumen. Proc Natl Acad Sci U S A. 108:20248-20253.
Koyama, Y., I. Yao, and S.I. Akimoto. 2004. Aphid galls accumulate high concentrations of amino acids: a support for the nutrition hypothesis for gall formation. Entomol. Exp. Appl. 113:35-44.
Kyndt, T., S. Denil, A. Haegeman, G. Trooskens, L. Bauters, W. Van Criekinge, T. De Meyer, and G. Gheysen. 2012. Transcriptional reprogramming by root knot and migratory nematode infection in rice. The New phytologist. 196:887-900.
Lamesch, P., T.Z. Berardini, D. Li, D. Swarbreck, C. Wilks, R. Sasidharan, R. Muller, K. Dreher, D.L. Alexander, M. Garcia-Hernandez, A.S. Karthikeyan, C.H. Lee, W.D. Nelson, L. Ploetz, S. Singh, A. Wensel, and E. Huala. 2012. The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res. 40:D1202-1210.
Machida, C., A. Nakagawa, S. Kojima, H. Takahashi, and Y. Machida. 2015. The complex of ASYMMETRIC LEAVES (AS) proteins plays a central role in antagonistic interactions of genes for leaf polarity specification in Arabidopsis. Wiley interdisciplinary reviews. Developmental biology. 4:655-671.
Maere, S., K. Heymans, and M. Kuiper. 2005. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 21:3448-3449.
Mani, M.S. 1964. Ecology of plant galls. W. Junk.
Meyer, J. 1987. Plant galls and gall inducers. Gebruder Borntraeger Verlagsbuchhandlung, Science Publishers.
Mortazavi, A., B.A. Williams, K. McCue, L. Schaeffer, and B. Wold. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature methods. 5:621-628.
Nabity, P.D., M.J. Haus, M.R. Berenbaum, and E.H. DeLucia. 2013. Leaf-galling phylloxera on grapes reprograms host metabolism and morphology. Proc. Natl. Acad. Sci. U. S. A. 110:16663-16668.
Oates, C.N., C. Kulheim, A.A. Myburg, B. Slippers, and S. Naidoo. 2015. The Transcriptome and Terpene Profile of Eucalyptus grandis Reveals Mechanisms of Defense Against the Insect Pest, Leptocybe invasa. Plant Cell Physiol. 56:1418-1428.
Ono, H., K. Ishii, T. Kozaki, I. Ogiwara, M. Kanekatsu, and T. Yamada. 2015. Removal of redundant contigs from de novo RNA-Seq assemblies via homology search improves accurate detection of differentially expressed genes. BMC Genomics. 16:13.
Pan, L.Y., W.N. Chen, S.T. Chiu, A. Raman, T.C. Chiang, and M.M. Yang. 2015. Is a Gall an Extended Phenotype of the Inducing Insect? A Comparative Study of Selected Morphological and Physiological Traits of Leaf and Stem Galls on Machilus thunbergii (Lauraceae) Induced by Five Species of Daphnephila (Diptera: Cecidomyiidae) in Northeastern Taiwan. Zool. Sci. 32:314-321.
Price, P.W., G.W. Fernandes, and G.L. Waring. 1987. Adaptive Nature of Insect Galls. Environ. Entomol. 16:15-24.
Price, P.W., G.L. Waring, and G.W. Fernandes. 1986. Hypotheses on the adaptive nature of galls. P Entomol Soc Wash. 88:361-363.
Raman, A., S. Madhavan, S.K. Florentine, and K. Dhileepan. 2006. Metabolite mobilization in the stem galls of Parthenium hysterophorus induced by Epiblema strenuana inferred from the signatures of isotopic carbon and nitrogen and concentrations of total non-structural carbohydrates. Entomol. Exp. Appl. 119:101-107.
Ronaghi, M., S. Karamohamed, B. Pettersson, M. Uhlén, and P. Nyrén. 1996. Real-Time DNA Sequencing Using Detection of Pyrophosphate Release. Anal Biochem. 242:84-89.
Sanger, F., and A.R. Coulson. 1975. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J. Mol. Biol. 94:441-448.
Schonrogge, K., L.J. Harper, and C.P. Lichtenstein. 2000. The protein content of tissues in cynipid galls (Hymenoptera : Cynipidae): Similarities between cynipid galls and seeds. Plant Cell Environ. 23:215-222.
Schuster, S.C. 2008. Next-generation sequencing transforms today's biology. Nat Meth. 5:16-18.
Seifert, G.J., and K. Roberts. 2007. The biology of arabinogalactan proteins. Annual review of plant biology. 58:137-161.
Shi, C.Y., H. Yang, C.L. Wei, O. Yu, Z.Z. Zhang, C.J. Jiang, J. Sun, Y.Y. Li, Q. Chen, T. Xia, and X.C. Wan. 2011. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC Genomics. 12:1-19.
Spurr, A.R. 1969. A low-viscosity epoxy resin embedding medium for electron microscopy. Journal of Ultrastructure Research. 26:31-43.
Sreenivasulu, N., B. Usadel, A. Winter, V. Radchuk, U. Scholz, N. Stein, W. Weschke, M. Strickert, T.J. Close, M. Stitt, A. Graner, and U. Wobus. 2008. Barley grain maturation and germination: Metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools. Plant Physiol. 146:1738-1758.
Stintzi, A., T. Heitz, V. Prasad, S. Wiedemann-Merdinoglu, S. Kauffmann, P. Geoffroy, M. Legrand, and B. Fritig. 1993. Plant 'pathogenesis-related' proteins and their role in defense against pathogens. Biochimie. 75:687-706.
Stone, G.N., and K. Schonrogge. 2003. The adaptive significance of insect gall morphology. Trends Ecol. Evol. 18:512-522.
Talukder, S.K., P. Azhaguvel, S. Mukherjee, C.A. Young, Y. Tang, N. Krom, and M.C. Saha. 2015. De Novo Assembly and Characterization of Tall Fescue Transcriptome under Water Stress. Plant Genome. 8:13.
Thimm, O., O. Blasing, Y. Gibon, A. Nagel, S. Meyer, P. Kruger, J. Selbig, L.A. Muller, S.Y. Rhee, and M. Stitt. 2004. MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 37:914-939.
Xia, Z.H., H.M. Xu, J.L. Zhai, D.J. Li, H.L. Luo, C.Z. He, and X. Huang. 2011. RNA-Seq analysis and de novo transcriptome assembly of Hevea brasiliensis. Plant Mol.Biol. 77:299-308.
Yang, C.-M., M.-M. Yang, J.-M. Hsu, and W.-N. Jane. 2003. Herbivorous insect causes deficiency of pigment-protein complexes in an oval-pointed cecidomyiid gall of Machilus thunbergii leaf. Botanical Bulletin of Academia Sinica. 33:135-140.
Yang, C.M., M.M. Yang, M.Y. Huang, J.M. Hsu, and W.N. Jane. 2007. Time deficiency of photosynthetic pigment-protein complexes CP1, A1, AB1, and AB2 in two cecidomyiid galls derived from Machilus thunbergii leaves. Photosynthetica. 45:589-593.
Yukawa, J. 1996. Insect and mite galls of Japan in colors = Nihon genshoku chuei zukan. Zenkoku Noson Kyoiku Kokai, Tokyo.
Zerbino, D.R., and E. Birney. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18:821-829.
Zerbino, D.R., G.K. McEwen, E.H. Margulies, and E. Birney. 2009. Pebble and rock band: heuristic resolution of repeats and scaffolding in the velvet short-read de novo assembler. PLoS One. 4:e8407.
Zhang, H., T. Dugé de Bernonville, M. Body, G. Glevarec, M. Reichelt, S. Unsicker, M. Bruneau, J.-P. Renou, E. Huguet, G. Dubreuil, and D. Giron. 2015. Leaf-mining by Phyllonorycter blancardella reprograms the host-leaf transcriptome to modulate phytohormones associated with nutrient mobilization and plant defense. Journal of Insect Physiology. 84:114-127.
Zhu, J.Y., J. Sae-Seaw, and Z.Y. Wang. 2013. Brassinosteroid signalling. Development. 140:1615-1620.