簡易檢索 / 詳目顯示

研究生: 宋浩鈞
Song, Hao-Jyun
論文名稱: 利用外加電場與光催化效應操縱氧化鋅表面奈米尺度的接觸起電現象
Manipulating the Nanoscale Contact Electrification on Zinc Oxide Surface by Using External Electric Field and Photocatalytic Effect
指導教授: 邱顯智
Chiu, Hsiang-Chih
口試委員: 莊程豪
Chuang, Cheng-Hao
張宜仁
Chang, Yi-Ren
邱顯智
Chiu, Hsiang-Chih
口試日期: 2021/07/09
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 58
中文關鍵詞: 接觸起電克氏探針表面電位顯微鏡光催化效應摩擦起電式奈米發電機氧化鋅
英文關鍵詞: contact electrification, Kelvin probe force microscopy, photocatalytic effect, triboelectric nanogenerator, zinc oxide
DOI URL: http://doi.org/10.6345/NTNU202300956
論文種類: 學術論文
相關次數: 點閱:182下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,我們利用基於原子力顯微鏡的技術,探討脈衝雷射沉積法製成的氧化鋅薄膜的接觸起電效應。在原子力顯微鏡的探針接觸氧化鋅薄膜時,我們藉由施加偏壓在探針上以及利用氧化鋅的光催化反應來進一步調控接觸起電實驗。透過使用峰值力輕敲式掃描模式,電荷載子可以在探針接觸到氧化鋅表面時被注入樣品並保存於其中。隨後我們再利用克氏探針表面電位顯微鏡監控樣品帶電區域的表面電位變化。由實驗我們發現 在接觸起電期間施加一個+10伏特的偏壓時,可以在樣品表面儲存正電荷使其產生相對 接觸前的表面電位差達約500毫伏特。然而,當我們改施加一個10伏特的偏壓時,則樣品表面可以儲存負電荷使其相對表面電位達約5000毫伏特。此實驗結果可以歸因於氧化鋅本質上為n型的半導體,較利於傳輸電子的關係。另外,我們使用波長為365奈米的紫外光照射氧化鋅薄膜表面來誘導光催化作用的發生。在紫外光照射後,氧化鋅的表面濕潤性將從疏水性轉變為超級親水性。透過實驗我們發現氧化鋅表面上來自吸收環境中水氣所形成的水層會阻礙摩擦起電時電荷的注入,使電荷需要透過量值更大的偏壓才可儲存於樣品表面中。我們的發現將可能有助於基於氧化鋅製成的摩擦起電式奈米發電機的後續發展。

    In this study, we investigated the effect of contact electrification (CE) on pulsed-laser-deposited zinc oxide (ZnO) thin film by using atomic force microscopy (AFM)-based techniques. The CE was further modulated by applying an electric bias to AFM probe during contact and the photocatalytic effect of ZnO. By using PeakForce tapping mode, charge carriers can be injected and stored in ZnO when the AFM probe was in contact with its surface. The evolution of surface potential on the charged area on ZnO was subsequently monitored by the Kelvin probe force microscopy (KPFM). We found that when a positive 10 V of electric bias was applied during CE, a surface potential of ~+500 mV can be attained. However, when a negative 10 V was applied, a surface potential as large as -5000 mV was found. This observation may be ascribed to the fact that ZnO is an intrinsic n-type semiconductor that favors electrons transport. Furthermore, we irradiate the ZnO surface by using UV light at 365 nm to induce the photocatalytic effect. The surface wettability of ZnO will be transformed from being hydrophobic to superhydrophilic after the UV illumination. We found that the adsorbed water layers from the ambient environment on the ZnO surface will impede the injection of charges during CE, and that a higher electric bias was needed to store charges in ZnO. Our findings may assist the development of ZnO-based TENGs.

    第一章序論 1 第二章原子力顯微鏡簡介 5 2-1 原子力顯微鏡 (atomic force microscope, AFM) 技術發展 5 2-2 原子力顯微鏡工作原理 6 2-3 原子力顯微鏡基本操作模式介紹 8 2-3-1 接觸式 (contact mode) 9 2-3-2 非接觸式 (non-contact mode) 10 2-3-3 輕敲式 (tapping mode) 10 2-4 原子力顯微鏡探針彈性係數校正 11 2-5 力對距離曲線 (force-distance curve) 14 2-6 峰值力輕敲式 (PeakForce tapping mode) 16 2-7 峰值力克氏探針表面電位顯微鏡 (PeakForce -Kelvin probe force microscope, PF-KPFM) 17 2-8 峰值力克氏探針表面電位顯微鏡探針功函數校正 21 第三章實驗方法與材料製備 22 3-1 氧化鋅 (zinc oxide,ZnO) 簡介 22 3-2 氧化鋅薄膜製備 23 3-2-1 脈衝雷射沉積法 (pulse laser deposition, PLD) 23 3-3 光致發光 (photoluminescence, PL) 性質量測 25 3-4 X光繞射 (X-ray diffraction, XRD) 性質量測 27 3-5 表面電位性質量測 30 3-6 光催化效應 (photocatalytic effect) 32 第四章實驗結果與討論 38 4-1 樣品表面形貌性質 38 4-2 光致發光光譜分析 39 4-3 X光繞射光譜分析 40 4-4 表面電位量測結果 41 4-5 光催化效應之影響 51 第五章結論與未來展望 54 參考資料 56

    H. X. Zou, et al., Mechanical modulations for enhancing energy harvesting: Principles, methods and applications.Applied Energy, 2019. 255: p. 113871.
    Z. L. Wang, et al., Triboelectrification, in Triboelectric Nanogenerators, Z.L. Wang, et al., Editors.2016, Springer International Publishing: Cham. p. 1-19.
    Y. Wang, Y. Yang, and Z. L. Wang, Triboelectric nanogenerators as flexible power sources.npj Flexible Electronics, 2017. 1(1): p. 10.
    F. R. Fan, Z. Q. Tian, and Z. L. Wang, Flexible triboelectric generator.Nano energy, 2012. 1(2): p. 328-334.
    Y. P. Jeon, J. H. Park, and T. W. Kim, Highly-enhanced triboelectric nanogenerators based on zinc-oxide nanoripples acting as a triboelectric layer.Applied Surface Science, 2018. 445: p. 50-55.
    A. Ohtomo and A. Tsukazaki, Pulsed laser deposition of thin films and superlattices based on ZnO.Semiconductor Science and Technology, 2005. 20(4): p. S1-S12.
    J. Schou, Physical aspects of the pulsed laser deposition technique: The stoichiometric transferof material from target to film.Applied Surface Science, 2009. 255(10): p. 5191-5198.
    R, D.S., et al., Photoinduced surface wettability conversion of ZnO and TiO2 thin films.The Journal of Physical Chemistry B, 2001. 105(10): p. 1984-1990.
    U. Celano, The Atomic Force Microscopy for Nanoelectronics, in Electrical Atomic Force Microscopy for Nanoelectronics, U. Celano, Editor. 2019, Springer International Publishing: Cham. p. 1-28.
    林宏旻, 陳彥甫, and 張家榮, 新世代原子力顯微鏡成像技術-PeakForce Tapping 模式與其衍生量測模式.科儀新知, 2012(191): p. 35-45.
    H. J. Butt, B. Cappella, and M. Kappl, Force measurements with the atomic force microscope: Technique, interpretation and applications.Surface science reports, 2005. 59(1): p. 1-152.
    J. L. Hutter and J. Bechhoefer, Calibration of atomic‐force microscope tips.Review of scientific instruments, 1993. 64(7): p. 1868-1873.
    C. P. Green, et al., Normal and torsional spring constants of atomic force microscope cantilevers.Review of Scientific Instruments, 2004. 75(6): p. 1988-1996.
    J. E. Sader, J. W. Chon, and P. Mulvaney, Calibration of rectangular atomic force microscope cantilevers.Review of scientific instruments, 1999. 70(10): p. 3967-3969.
    S. Vlassov, et al., Adhesion and mechanical properties of PDMS-based materials probed with AFM: a review Reviews on Advanced Materials Science, 2018. 56(1): p. 62-78.
    K. Hayashi and M. Iwata, Stiffness of cancer cells measured with an AFM indentation method.Journal of the Mechanical Behavior of Biomedical Materials, 2015. 49: p. 105-111.
    M. E. Dokukin and I. Sokolov, Quantitative mapping of the elastic modulus of soft materials with HarmoniX and PeakForce QNM AFM modes.Langmuir, 2012. 28(46): p. 16060-16071.
    W. Melitz, et al., Kelvin probe force microscopy and its application.Surface science reports, 2011. 66(1): p. 1-27.
    T. Minami, et al., Transparent conducting ZnO thin films deposited by vacuum arc plasma evaporation.Thin Solid Films, 2003. 445(2): p. 268-273.
    C. Xia, et al., Room-temperature ferromagnetic properties of Fe-doped ZnO rod arrays.Solid State Sciences, 2011. 13(2): p. 388-393.
    H. Li, et al., Triboelectric-polarization-enhanced high sensitive ZnO UV sensor.Nano Today, 2020. 33: p. 100873.
    H. Agarwal, et al., Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route.Chemico-biological interactions, 2018. 286: p. 60-70.
    Y. Wang, et al., Strong antibacterial dental resin composites containing cellulose nanocrystal/zinc oxide nanohybrids.Journal of dentistry, 2019. 80: p. 23-29.
    Ü. Özgür, et al., A comprehensive review of ZnO materials and devices.Journal of applied physics, 2005. 98(4): p. 11.
    M. Sajjad, et al., Structural and optical properties of pure and copper dopedzinc oxide nanoparticles.Results in Physics, 2018. 9: p. 1301-1309.
    B. Lin, Z. Fu, and Y. Jia, Green luminescent center in undoped zinc oxide films deposited on silicon substrates.Applied physics letters, 2001. 79(7): p. 943-945.
    T. J. Kemp and N. W. Alcock, 100 years of X-ray crystallography.Science progress, 2017. 100(1): p. 25-44.
    C. M. Efaw, et al., Toward Improving ambient Volta potential measurements with SKPFM for corrosion studies.Journal of The Electrochemical Society, 2019. 166(11): p. C3018-C3027.
    B. J. Jin, S. Im, and S. Y. Lee, Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition.Thin Solid Films, 2000. 366(1): p. 107-110.
    V. Kumar, et al., Enhanced near-band edge emission in pulsed laser deposited ZnO/c-sapphire nanocrystalline thin films.Applied Physics A, 2019. 125(3): p. 212.
    X. M. Fan, et al., Microstructure and photoluminescence properties of ZnO thin films grown by PLD on Si (111) substrates.Applied Surface Science, 2005. 239(2): p. 176-181.
    S. Fakhari, M. Jamzad, and H. Kabiri Fard, Green synthesis of zinc oxide nanoparticles: a comparison.Green chemistry letters and reviews, 2019. 12(1): p. 19-24.
    V. Gruzdev, et al. Surface damage of thin AlN films with increased oxygen content by nanosecond and femtosecond laser pulses. in Laser-Induced Damage in Optical Materials: 2009. 2009. International Society for Optics and Photonics.
    T. Su and H. Zhang, Electrical study of trapped charges in copper-doped zinc oxide films by scanning probe microscopy for nonvolatile memory applications.PloS one, 2017. 12(1): p. e0171050.
    M. Wei, et al., Surface work function of transparent conductive ZnO films.Energy Procedia, 2012. 16: p. 76-80.
    D. S. Bohle and C. J. Spina, Cationic and anionic surface binding sites on nanocrystalline zinc oxide: surface influence on photoluminescence and photocatalysis.Journal of the American Chemical Society, 2009. 131(12): p. 4397-4404.
    K. Ellmer and R. Mientus, Carrier transport in polycrystalline transparent conductive oxides: A comparative study of zinc oxide and indium oxide.Thin Solid Films, 2008. 516(14): p. 4620-4627.
    H. Hu, H. F. Ji, and Y. Sun, The effect of oxygen vacancies on water wettability of a ZnO surface.Physical Chemistry Chemical Physics, 2013. 15(39): p. 16557-16565.
    L. S. McCarty and G. M. Whitesides, Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets.Angewandte Chemie International Edition,2008. 47(12): p. 2188-2207.

    下載圖示
    QR CODE