研究生: |
周界志 Chieh-Chih Chou |
---|---|
論文名稱: |
三晶片-多維度微層析系統全面分析有機混合氣體之研究 A Three Chip-Micro Gas Chromatographic System for Comprehensive Organic Gas Vapor Analysis |
指導教授: |
呂家榮
Lu, Chia-Jung |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 145 |
中文關鍵詞: | 微層析晶片 、微氣相層析儀 、二維氣相層析 、碳分子篩 、平行分離層析 、有機揮發性氣體 |
英文關鍵詞: | micro-chip, μGC, 2D-GC, CMS, parallel separation, VOCs |
論文種類: | 學術論文 |
相關次數: | 點閱:264 下載:10 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用微機電製程技術(micro electro mechanical system, MEMS)製作三種不同的微層析晶片,分別是單管柱微層析晶片(DB-1,3 m)、多管柱平行分離微層析晶片(OV-210、OV225、OV-25,各1 m)、單管柱微層析晶片(碳分子篩,1 m),將這三種晶片進行組合,形成三晶片-多維度微層析系統。
本系統以DB-1單管柱微層析晶片為共同主軸進行前段分離,其後則以四向閥將裝置系統分為兩部分,第一部分是碳分子篩單管柱微層析晶片,負責分離C5以下的高揮發性有機氣體,是一個串聯式GC-GC一維層析,第二部分則是多管柱微層析晶片,負責分離C5及C5以上的低揮發性有機氣體,利用三向閥來進行氣流路徑的切換,所建構出的一個Stop-flow μGC×μGCs二維層析,透過多管柱平行分離微層析晶片中的三種靜相,產生三張不同的二維層析圖,藉由三種不同的結果,可進行交叉比對,以增加定性判定的準確度。
在本研究中,成功地將低揮發度及高揮發度有機氣體分別送至個別適合分析的區域,並在固定的主流速下,尋找各種最佳的實驗參數,其中包括wait time、inject to 2nd-column time、以及個別微層析晶片的溫度梯度參數,最後在最佳條件下,對系統進行測試。
在流道總長度只有4 m長的情況下,不需類似液態氮的冷凍裝置,使用致冷晶片進行升溫降溫,即可成功地分離沸點-161°C ~ 234°C的49種有機氣體,證明了此三晶片-多維度微層析系統全面分析有機混合氣體的可行性。
We developed three different structures of μ-column chip using micro electro mechanical system (MEMS) process. They are 3 m long single dimension μ-column chip coated by DB-1 as stationary phase, each length of 1 m three parallel μ-columns chip coated by OV-210, OV-225,OV-25 as stationary phase and length of 1 m single dimension μ-column chip coated carbon molecular as stationary phases. Combining these different μ-column chips, we can construct a three chip-micro gas chromatographic system for comprehensive organic gas vapor analysis.
We use DB-1 μ-column chip as the core to make preceding analysis. After this, gas flow is divided into two different parts by a four-way valve. One is using carbon molecular sieve μ-column chip to analyze high volatile gas of carbon number less than five, the other is using three parallel μ-columns chip which combines DB-1 μ-column chip and μ-three-way valve to be a comprehensive two-dimensional gas chromatograph. We use this 1×3 combination to analyze low volatile gas with carbon number greater than or equal to five. In this part, we can get three different two dimensional chromatograms because of different stationary phases in three parallel μ-columns chip. Through the cross comparison between these results, we can enhance the accuracy of qualitative analysis.
In the study, we successfully find various optimal experimental parameters, which include wait time、inject to 2nd-column time and each of μ-column chip temperature. Finally, under the optimal experimental parameter, the system is tested with a mixture of 49 compounds.
In the case of the total length only 4m long in the flow channel and without liquid nitrogen refrigeration system similar, using thermoelectric cooling module to cool and heat the temperature of μ-column chip. We can successfully separate 49 organic gases with boiling point ranged from -161°C to 234°C. The feasibility of a three chip-micro gas chromatographic system for comprehensive organic gas vapor analysis is demonstrated.
[1] C.J. Lu, W. H. Steinecker, W. C .Tian, M. C. Oborny, J.M. Nichols,M. Agah, J.A. Potkay, H. K. L. Chan, J. Driscoll, R. D. Sacks, K.D. Wise, S. W. Pang, E. T. Zellers, Lab Chip, 2005, 5, 1123–1131
[2] S. C. Terry, J. H. Jerman, J. B. Angell, IEEE Transactions on Electron Devices, 1979, 26, 1880-1886
[3] R. W. Tjerkstra, M. de Boer, E. Berenschot, J. G. E. Gardeniers, A.van den Berg, M. C. Elwenspoek, Electrochimica Acta, 1997, 42, 3399-3406
[4] M. J. de Boer, R. W. Tjerkstra, J. W. Berenschot, Henri V. Jansen, G. J. Burger, J. G. E. Gardeniers, Miko Elwenspoek, Albert van den Berg, Journal of Microelectromechanical Systems, 2000, 9, 94-103
[5] G. Lambertus, A. Elstro, K. Sensenig, J. Potkay, M. Agah, S.Scheuering, K. Wise, F. Dorman, R. Sacks, Analytical Chemistry, 2004, 76, 2629-2637
[6] A. D. Radadia, R. D. Morgan, R. I. Masel, M. A. Shannon, Analytical Chemistry, 2009, 81, 3471-3477
[7] A. C. Lewis, J. F. Hamilton, C. N. Rhodes, J. Halliday, K. D. Bartle, P. Homewood, R. J.P. Grenfell, B. Goody, A. M. Harling, P. Brewer, G. Vargha, M.T. Milton, Journal of Chromatography A, 2010, 1217, 768-774
[8] Daniel, C. H., In Quantitative Chemical Analysis, Sixth Edition, New York
[9] P. Marriott, R. Shellie, Trends in Analytical Chemistry, 2002, 21, 573-583
[10] J. B. Phillips, J. Beens, Journal of Chromatography A, 1999, 856, 331-347
[11] W. Bertsch, F. Hsu, A. Zlatkis, Analytical Chemistry, 1976, 48, 928-931
[12] W. Bertsch, Journal of High Resolution Chromatography, 1999, 22, 647-665
[13] J. C. Gidding, in: H.J. Cortes (Ed.), Multidimensional Chromatography – Techniques and Applications, Marcel Dekker, New York, 1990, pp. 1–27
[14] Z. Liu, J. B. Phillips, Journal of Chromatographic Science, 1991, 29, 227-231
[15] Thermo Fisher Corp. http://www.thermofisher.com/en/home.html
[16] C. J. Venkatramani, J. Xu, J. B. Phillips, Analytical Chemistry, 1996, 68, 1486-1492
[17] J. Dalluge, J. Beens, U.A.T. Brinkman, Journal of Chromatography A, 2003, 1000, 69-108
[18] M. Adahchour, J. Beens, R.J.J. Vreuls, U.A.T. Brinkman, TrAC Trends in Analytical Chemistry, 2006, 25, 438-454
[19] P. Korytár, P.E.G. Leonards, J. de Boer, U.A.Th. Brinkman, Journal of Chromatography A, 2002, 958, 203-218
[20] C.J. Venkatramani, J.B. Phillips, Journal of Microcolumn Separations, 1993, 5, 511-516
[21] J. B. Phillips, E. B. Ledford, Field Analytical Chemistry, Tech, 1996, 1, 23-29
[22] P. J. Marriott, R. M. Kinghorn, Analytical Chemistry, 1997, 69, 2582-2588
[23] J. V. Seeley, F. Kramp, C. J. Hicks, Analytical Chemistry, 2000, 72, 4346-4352
[24] G. R. Lambertus, J.A. Crank, M. E. McGuigan, S. Kendler, D. W. Armstrong, R. D. Sacks, Journal of Chromatography A, 2006, 1135, 230-240
[25] J. V. Seeley, N. J. Micyus, S. V. Bandurski, S. K. Seeley, J. D. McCurry, Analytical Chemistry, 2007, 79, 1840-1847
[26] Bryan J. Prazen, Carsten A. Bruckner, Robert E. Synovec, Bruce R. Kowalski, Analytical Chemistry, 1999, 71, 1093-1099
[27] Ying Liu, Chang-Qin Hu, Journal of Chromatography A, 2007, 1175, 259-266
[28] J. Liu, M. K. K. Oo, K. Reddy, Y. B. Gianchandani, J. C. Schultz, H. M. Appel, X. Fan, Analytical Chemistry, 2012, 84, 4214-4220
[29] J. Liu, J. H. Seo, Y. Li, D. Chen, K. Kurabayashi, X. Fan, Analytical Chemistry, 2013, 13, 818-825
[30] B. X. Chen, T. Y. Hung, R. S. Jian, C. J. Lu, Lab on a Chip, 2013, 10, 1039-1048
[31] C. J. Lu, J. Whiting, R. D. Sacks, E. T. Zellers, Analytical Chemistry, 2003, 75, 1400-1409
[32] S. J. Kim, G. Serrano, K. D. Wise, K. Kurabayashi, E. T. Zellers, Analytical Chemistry, 2011, 83, 5556-5562
[33] S. K. Kim, D. R. Burris, J. Bryant-Genevier, K. A. Gorder, E. M.Dettenmaier, E.T. Zellers, Environmental Science Technology, 2012, 46, 6073-6079
[34] O. Amador-Muñoz , P. J. Marriott, Journal of Chromatography A, 2008, 1184, 323-340
[35] J. L. Adcock, M. Adams, B. S. Mitrevski, P. J. Marriott, Analytical Chemistry, 2009, 81, 6797-6804
[36] L. Xie, P. J. Marriott, M. Adams, Analytica Chimica Acta, 2003, 500, 211-222
[37] H. Kong, F. Ye, X. Lu, L. Guo, J. Tian, G. Xu, Journal of Chromatography A, 2005, 1086, 160-164
[38] W. Khummueng, J. Harynuk, P. J. Marriott, Analytical Chemistry, 2006, 78, 4578-4587
[39] 鍾永信,以微層析晶片建構二維氣相層析方法之研究,國立台灣師範大學,2010
[40] 陳柏勳,雙晶片-多維度氣相層析模組開發與研製,國立台灣師範大學,2011