簡易檢索 / 詳目顯示

研究生: 陳文陸
Chen Wen-lu
論文名稱: 層析在基原、胃腸液及生體介質中之應用
指導教授: 許順吉
Xu, Shun-Ji
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 133
中文關鍵詞: 毛細管電泳高效液相層析基原薑黃大黃三黃
英文關鍵詞: CE, HPLC, sources, Curcumae Rhizoma, Rhei Rhizoma, Oasis
論文種類: 學術論文
相關次數: 點閱:196下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 毛細管電泳(CE)及高效液相層析(HPLC)是目前最常用來測定中藥成分含量的分析方法。本研究開發薑黃之CE分析條件,並用HPLC鑑定大黃基原與檢測生體介質中大黃成份。
    本研究分四個部分,第一部分為開發薑黃藥材的毛細管電泳分析方法。薑黃為常用之中藥材,為薑科植物薑黃 Curcuma longa Linn.的乾燥根莖,具有抗炎、抗菌、抗氧化、抗腫瘤、降血脂等作用。本研究利用毛細管電泳分析藥材中的α-turmerone、β-turmerone、ar-turmerone、 curcumin、demethoxycurcumin、bisdemethoxycurcumin、p-tolylmethyl carbinol、curcumenol等八個重要藥理活性成分。實驗結果顯示利用微胞電動力學毛細管層析(MEKC),以添加SC(sodium cholate)界面活性劑的硼酸鹽溶液為緩衝液,可在25分鐘內分析其中六個成分,而α-turmerone與β-turmerone因結構類似故無法分離。
    第二部分為探討大黃sennoside B(SB), sennoside A(SA), rhein(RH), aloe-emodin(AE), emodin(EM), chryaphanol(CH)在不同萃取方式的三黃瀉心湯中的含量差異及大黃、黃芩、黃連以不同比例配置的三黃瀉心湯製劑在人工胃液、腸液中的大黃成分變化。大黃成分在人工胃液中幾不發生變化,但在人工腸液中,由於大黃成份會抑制黃芩配醣體成分水解,因此當有黃芩的存在或大黃藥材配伍的量愈多時,大黃各成份耗損的比例愈高,其中以大黃/黃芩/黃連=2/1/1配伍之三黃瀉心湯的結果最明顯,與等量藥材比較,各成分的萃出比值為SB 25%,SA 6%,RH 29%,AL 16%,EM 43%,CH 12%。
    第三部分為比較不同三黃萃取浸膏在動物體內的吸收代謝差異,並開發適當的前處理方法,以便分析餵食後小白鼠血液、尿液中大黃成分的含量不同。本實驗使用Oasis® Cartridge作為前處理,能有效去除干擾物並濃縮樣品,各成分回收率除了AL為79%外,其餘成份均高於90%,經過前處理的血液與尿液,其LC層析圖譜中各波峰重疊較不嚴重,CH、RH、EM、AE波峰可明顯分辨,且管柱不易發生堵塞。本研究以水萃取、50%乙醇萃取、混煎之三黃浸膏等樣品作比較,發現餵食混煎三黃浸膏之老鼠尿液中各成份含量偏低。另外從各成份趨勢變化圖可發現餵食混煎三黃浸膏之老鼠血液各成份出現時間最早,存留時間最長,至12小時之後才有明顯降低之趨勢。
    最後一部份收集馬蹄大黃(Rheum officinale Baillon)、掌葉大黃(Rheum palmatum Linne)與唐古特大黃(Rheum tanguticum Maxim)共31個樣品,利用HPLC分析大黃十九個組成成分,以建立大黃基原之化學辨識規則。結果顯示,以6 aloe-emodin-8-O-b-D- (6”-O-galloyl)–glucopyranoside, 12 aloe- emodin-ω-O-β-D-gluco-pyranoside, 13 physcion-8-O-β-D-glucopyranoside, 15 aloe-emodin, 16 rhein, 18 chrysophanol, 19 physcion與內標之波峰面積比值,可做為辨識大黃基原時的指標。研究發現馬蹄大黃的15/IS<0.24,16/IS<0.67,18/IS<0.38,19/IS<0.1。而同屬錦紋大黃的唐古特大黃與掌葉大黃其15/IS>0.25,16/IS>0.67,18/IS>0.49,19/IS>0.1。另外唐古特大黃與掌葉大黃的分辨方法為前者的6/IS>0.37,12/IS>0.08,13/IS>0.1,而後者的6/IS<0.36,12/IS<0.03,13/IS<0.07,(檢液為內標準品溶液0.504mg/mL的methyl 2,4-dihydroxybenzoate,取1mL與樣品液溶成50mL,再取10μL注入LC分析)。此外,唐古特大黃的16/6<3.3,18/6<2.0,19/6<0.5,而掌葉大黃的16/6>3.5,18/6>3.4,19/6>0.6。根據以上數據,可作為辨識大黃基原時的參考依據。

    Capillary electrophoresis (CE) and high-performance liquid chromatography (HPLC) are currently the most commonly used methods for analyzing the contents of constituents of Chinese herb drugs. In this study we have developed the CE conditions for analyzing Curcumae Rhizoma and used HPLC to identify the source of Rhei Rhizoma and detect its constituents in the living body.
    This study is divided into four parts. The first part is on the development of CE analysis method. Curcumae Rhizoma is a commonly used Chinese herb drug derived from the dried rhizome of the Zingiberaceous plant Curcuma long L. The drug possesses antiphlogistic, antibacterial, antioxidation, antitumor and hypoglycemic effects. This study used CE to analyze the eight important pharmacologically active constituents, a-turmerone, b-tumerone, ar-turmerone, curcumin, demethoxycurcumin, bisdemethoxycurcumin, p-tolymethyl carbinol and curcumenol. Experimental results show that by means of the micellar electrokinetic capillary chromatography (MEKC) with the addition of the borate acid solution containing the surfactant SC (sodium cholate) as a buffer, we are able to analyze six of the constituents within 25 min. Whereas, a-turmerone and b-tumerone are inseparable because of their similarity in structure.
    The second part discusses the differences of contents of sennoside B (SB), sennoside A (SA), rhein (RH), aloe-emodin (AE), emodin (EM) and chrysophanol (CH) in the formula Coptis and Rhubarb Combination extracted by different methods; and changes of Rhei Rhizoma constituents in artificial gastric fluid and artificial intestinal fluid for different compositions of the formula made up of the ingredients Rhei Rhizoma, Scutellariae Radix and Coptidis Rhizoma in different ratios. The constituents of Rhei Rhizoma undergo almost no changes in artificial gastric fluid. However, in artificial intestinal fluid, the Rhei Rhizoma constituents can inhibit the hydrolysis of the glycosides from Scutellariae Radix. Hence, in the presence of Scutellariae Radix, or when a larger amount of Rhei Rhizoma is incorporated in the formula, the various constituents of Rhei Rhizoma are consumed in a higher rate. This condition is most conspicuous in the formula composed of Rhei Rhizoma/Scutellariae Radix/Coptidis Rhizoma in the ratios of 2 : 1 : 1. Compared on the basis of equal amount of drug material, the extraction-yield ratios of the various constituents are SB 25%, SA 6%, RH 29%, AE 16%, EM 43% and CH 12%.
    The third part compares the absorption and metabolism conditions with the formula extracted by different methods, and develops some suitable pretreatment method for the formula to be fed to mice whose blood and urine are then sampled and analyzed for differences in the contents of the various constituents of Rhei Rhizoma. This study uses Oasisâ Cartridge for the pretreatment, by which interfering substances can be effectively eliminated and the sample condensed. The recovery rates of the constituents are all above 90%, except AL, which is 79%. After pretreatment, the blood and urine samples have various LC peaks that do not present serious overlapping. The peaks corresponding to CH, RH, EM and AE can be clearly identified, and the column does not get clogged so easily. This study compares the formula extracted with water, 50% ethanol and mixed-decoction, and has found that the formula extracted by the mixed-decoction mode yields lower contents of the various constituents in the urine of the mice. Moreover, the tendency (pharmacokinetic) graphs of the various constituents show that the constituents from the formula prepared by mixed concoction appear earliest in the blood stream of the mice and remain there for the longest time, showing a prominent tendency of decline only after 12 hours.
    The final part is on the collection of 31 samples derived from Rheum officinale Baillon, R. palmatum L. and R. tanguticum Maxim. which were analyzed with HPLC for nineteen constituents from these samples in order to establish a rule for identifying the sources of Rhei Rhizoma. The results show that the peak area ratios between the internal standard (IS) and 6 aloe-emodin-8-O-b-D-(6”-O-galloyl)- glucopyranoside, 12 aloe-emodin-w-O-b-D-gluco-pyranoside, 13 physcion-8-O-b-D- glucopyranoside, 15 aloe-emodin, 16 rhein, 18 chrysophanol and 19 physcion can serve as an indicator in identifying the source of Rhei Rhizoma, whereby we have found that the horse-hoof Rhei Rhizoma (Rheum officinale) has 15/IS < 0.24, 16/IS < 0.67, 18/IS < 0.38 and 19/IS < 0.1.While the Tangutic Rhei Rhizoma (Rheum tanguticum) and the palm-leafed Rhei Rhizoma (Rheum palmatum), which along with the horse-hoof Rhei Rhizoma all belong to the same grade known as “silk-grained Rhei Rhizoma”, have 15/IS > 0.25, 16/IS > 0.67, 18/IS > 0.49 and 19/IS > 0.08. The way to discriminate the Tungutic from the palm-leafed Rhei Rhizoma is that the former has 6/IS . 0.37, 12/is > 0.08 and 13/is > 0.1; and the latter, 6/IS < 0.36, 12/IS < 0.03 and 13/IS < 0.07 (The internal standard is prepared mixing 1 ml of 0.504 mg/ml methyl-2,4-dihydroxybenzoate solution with 0.2 g of sample in 45 ml of 70% methanol and making to 50ml. A 10-ml aliquot of the solution is then injected into LC for analysis). In addition, the Tungutic Rhei Rhizoma has 16/6 < 3.3, 18/6 < 2.0, 19/6 < 0.5; and the palm-leafed Rhei Rhizoma has 16/6 > 3.5, 18/6 > 3.4 and 19/6 > 0.6. Based on the above data, we are able to identify the sources of Rhei Rhizoma samples.

    圖目錄…………………………………………………………II 表目錄……………………………………………………...….V 中文摘要……………………………………………………..VII 英文摘要………………………………………………...……IX 第一章 緒論 第一節 前言……………………………………………………………1 第二節 高效能液相層析法……………………………………………3 第三節 毛細管電泳分析法……………………………………………5 第四節 分析條件參數及適宜性之評估……………………………..14 第五節 化學指紋圖譜………………………………………………..18 第二章 薑黃成份之毛細管電泳 第一節 前言……………………..……………………………………20 第二節 實驗部份……………………………………………………..23 第三章 胃液腸液中大黃成份之定量研究 第一節 前言…………………………………………………………..43 第二節 實驗部份……………………………………………………..46 第三節 結果與討論……………………………………..……………53 第四節 實驗條件之選擇…………………………………………..…59 第四章 血液尿液中大黃成份之定量研究 第一節 前言………………………..…………………………………70 第二節 實驗部分………………………..……………………………71 第三節 結果與討論………………………..…………………………76 第五章 大黃之基原鑑定 第一節 前言………………………………..…………………………85 第二節 實驗部分…………………………..…………………………93 第三節 結果與討論……………………….………………………….96 第六章 結論…………………………………………………………….111 參考資料…………………………………………….…………………116 附錄一 薑黃分析成份UV圖…………………………………….123 附錄二 自分離薑黃成份IR、NMR、MS圖…………………125 附錄三 大黃分析成份圖…………………………………………… 129

    [1] M. Twett, Proc. Warsaw Soc. Nat. Sci. Biol., 1903, 14, 6.
    [2] A. J. P. Martin and R. L. M. Synge, Biochem. J., 1941, 35, 1358.
    [3] A. T. James and A. J. P. Martin, Analyst, 1952, 77, 915.
    [4] E. Stahl, Chemiker-Ztg., 1958, 82, 323.
    [5] J. F. K. Huber and J. A. R. J. Hulsman, Anal. Chem. Acta, 1967, 38, 305.
    [6] A. Tiselius, Tran. Faraday Soc., 1937, 33, 524.
    [7] S. Hjertén, Chromatogr. Rev., 1967, 9, 122.
    [8] R. Virtanen, Acta Polytechnica Scand., 1974, 123, 1.
    [9] F. E. P. Mikkers, F. M. Everaerts and T. P. E. M. Verheggen, J. Chromatogr., 1979, 169, 11.
    [10] J. W. Jorgenson and K. D. Lukacs, Anal. Chem., 1981, 53, 1298.
    [11] S. Hjertén, J. Chromatogr., 1985, 347, 171.
    [12] J. R. Mazzeo and I. S. Krell, Biotechniques, 1991, 10, 638.
    [13] T. Wehr, LC-GC Mag., 1993, 11, 14.
    [14] A. S. Cohen and B. L. Karger, J. Chromatogr., 1987, 397, 409.
    [15] A. S. Cohen, A. Paulus and B. L. Karger, Chromatographia, 1987, 24, 15.
    [16] A. S. Cohen, D. R. Najarian, A. Paulus, A. Guttman, J. A. Smith and B. L. Karger, Proc. Natl. Acad. Sci. U.S.A., 1988, 85, 9660.
    [17] H. Drossman, J. A. Luckey, A. Kostichka, J. D. Cunha and L. M. Smith, Anal. Chem., 1990, 62, 900.
    [18] P. Bocek and A. Chrambach, Electrophoresis, 1991, 12, 1059.
    [19] S. Terabe, K. Otsuka, K. Ichikawa, A. Tsuchiya and T. Ando, Anal. Chem., 1984, 56, 111.
    [20] S. Terabe, K. Otsuka and T. Ando, Anal. Chem., 1985, 57, 834.
    [21] S. Hjertén, J. L. Liao and K. Yao, J. Chromatogr., 1987, 387, 127.
    [22] D. J. Rose and J. W. Jorgenson, Anal. Chem., 1988, 60, 642.
    [23] S. F. Y. Li, Capillary electrophoresis, chapter 1, p.1,
    Elservier Scientific Publishers, Amsterdam, 1992.
    [24] S. Compton and R. Brownlee, Biotechniques, 1988, 6, 432.
    [25] W. B. Hardy, J. Physiol., 1892, 24, 288.
    [26] W. B. Hardy, J. Physiol., 1905, 33, 273.
    [27] T. B. Coolidge, J. Biol. Chem., 1939, 127, 551.
    [28] R. A. Consden, A. H. Gorden and A. J. P. Martin, Biochem. J., 1946, 40, 33.
    [29] J. Porath, Biochem. Biophys. Acta, 1956, 22, 151.
    [30] D. N. Heiger,高效毛細管電泳導論(中譯本),中國惠普公司,北京,1993。
    [31] T. Tsuda, Handbook of Capillary Electrophoresis, chapter 1, J. P. Landers, Ed., CRC Press, 1997.
    [32] H. Z. Helmholtz, Anal. Phys. Chem., 1879, 7, 337.
    [33] D. A. Skoog, F. J. Holler and T. A. Nieman, Princeples of Instrumental Analysis, chapter 30, F. Messina, Ed., CRC Press, 1997.
    [34] J. C. Reijenga, G. U. A. Aben, T. P. E. M. Verheggen and F. M. Everaerts, J. Chromatogr., 1983, 260, 241.
    [35] T. Tsuda, High Resoln Chromatogr. Commun., 1987, 10, 622.
    [36] W. R. Jones and P. J. Andik, J. Chromatogr., 1991, 546, 445.
    [37] W. R. Jones and P. J. Andik, J. Chromatogr., 1992, 608, 385.
    [38] 許鴻源、陳玉盤、許順吉、許照信、陳建志、張憲昌,簡明藥材學,第347頁,新醫藥出版社,台北,1985。
    [39] 國家中醫藥管理局,中華本草,第684頁,上海科學技術出版社,上海,1998。
    [40] 行政院衛生署中醫藥委員會-中醫藥資訊網路-醫藥知識區-認識中藥http://www.ccmp.gov.tw/index-c/knowledge/toknowlist.asp?KID=Know0346
    [41] 葫蘆中醫藥專業資訊網-中草藥篇-台灣民間草藥http://www.hulu.com.tw/tfd/curcuma_1h.htm
    [42] 中國藥品生物製品檢定所,中國中藥材真偽鑑別圖鑑(2),第208頁,廣東科技出版社,廣東,1997。
    [43] 徐國鈞,中國藥材學,第633-634頁,中國醫藥科技出版社,北京,1996。
    [44] H. P. T. Ammon and M. A. Wahl, Planta Med., 1991, 57, 2.
    [45] 許實波、唐孝禮,中草藥,1991,22,3。
    [46] 黃榮宏,薑黃與鬱金成份的定量研究,私立中國文化大學應用化學研究所論文,台北,1981。
    [47] G. N. Roth, A. Chandra and M. G. Nair, J. Nat. Prod., 1998, 61, 542.
    [48] A. Apisariyakul, N. Vanittanakom and D. Buddhasukh, Journal of Ethopharmacology, 1995, 49, 163.
    [49] A. R. Bosca, A. Soler, E. Q. Almagro and J. Miquel, Mech. ageing Dev., 2000, 114, 207.
    [50] J. Miquel, A. Bernd, J. M. Sempere and A. Ramirez, Arch. gerontol. geriatr., 2002, 34, 37.
    [51] A. Khar, Z. Begum and R. Anjum, FEBS Lett., 1999, 445, 165.
    [52] M. M. Chan, Biochemical Pharmacology, 1995, 49, 1551.
    [53] 施政安,癌症化學預防-薑黃素的抗癌機制,國立臺灣大學生化學研究所論文,台北,1994。
    [54] 鄧兆薇,薑黃與鬱金對各種肝毒性物質所誘發肝障害之治療效果的研究,私立臺北醫學院醫學研究所論文,台北,1994。
    [55] 林仲涇,薑黃中的天然油脂抗氧化劑,私立中國文化大學應用化學研究所論文,台北,1982。
    [56] A. P. Gupta, M. M. Gupta and S. Kumar, J. Chromatogr., 1999, 22, 1561.
    [57] 趙德永、楊模坤,藥學學報,1986,21,382。
    [58] X. G. He, L. Z. Lin, L. Z. Lian and M. Lindenmaier, J. Chromatogr. A, 1998, 818, 127.
    [59] B. Gopalan, M. Goto, A. Kodama, T. Hirose and J. Agric, Food Chem., 2000, 48, 2189.
    [60] H. Matsuda, T. Morikawa, I. Toguchida, K. Ninomiya and M. Yoshikawa, Heterocycles, 2001, 55, 841.
    [61] Y. Kiso, Y. Suzuki, Y. Oshima and H. Hikino, Phytochemistry, 1983, 22, 596.
    [62] B. T. Golding and P. Esteban, J. Chem. Soc. Perkin Trans, 1992, 1, 1519.
    [63] W. Kreiser and F. Korner, Helv. Chim. Acta, 1999, 82, 1610.
    [64] P. Lukkari, H. Vuorela and M. L. Riekkola, J. Chromatogr. A, 1993, 655, 317.
    [65] 許鴻源、陳玉盤、許順吉、許照信、陳建志、張憲昌,簡明藥材學,第348頁,新醫藥出版社,台北,1985。
    [66] 許鴻源,中藥材之研究,第222頁,新醫藥出版社,台北,1980。
    [67] 行政院衛生署中醫藥委員會-中醫藥資訊網路-醫藥知識區-認識中藥http://www.ccmp.gov.tw/index-c/knowledge/toknowlist.asp?KID=Know0374
    [68] 許鴻源,中藥材之研究,第137-140頁,新醫藥出版社,台北,1980。
    [69] 許鴻源、陳玉盤、許順吉、許照信、陳建志、張憲昌,簡明藥材學,第61頁,新醫藥出版社,台北,1985。
    [70] 陳榮福、顏焜熒,中藥藥理學,第212-217頁,國立中國醫藥研究所,台北,1991。
    [71] 李樹猷,現代中藥學(上),第252頁,正中書局,台北,1973。
    [72] T. Matsuoka, Shoyakugaku Zasshi, 1961, 15, 113.
    [73] M. Miyamoto, S. Imai, M. Shinohara and S. Fujioka, Yakugaku Zasshi, 1967, 87, 1040.
    [74] H. Oshio, Y. Naruse and M. Tsukui, Chem. Pharm. Bull., 1978, 26, 2458.
    [75] 赤掘 昭,香川 清水,升井 正生,漢方研究,1978,12,13。
    [76] 邱佩玉,製劑分析方法開發與柑橘藥材基原鑑定研究,第80-82頁,國立台灣師範大學化學研究所碩士論文,台北,2002。
    [77] 鄭俊華、張立力、樓之岑,北京醫科大學學報,1991,23,51。
    [78] J. W. Briks and R. W. Frei, Trend Anal. Chem., 1982, 1, 361.
    [79] C. L. Liu, P. L. Zhu and M. C. Liu, J. Chromatogr. A, 1999, 857, 167.
    [80] D. Djozan and Y. Assadi, Talanta, 1995, 42, 861.
    [81] W. C. Weng and S. J. Sheu, J. High Resoln Chromatogr. Chromatogr. Commun., 2000, 23, 143.
    [82] S. J. Sheu and H. R. Chen, Anal. Chim. Acta, 1995, 309, 361.
    [83] S. J. Sheu and H. R. Chen, J. Chromatogr. A, 1995, 704, 141.
    [84] Y. Y. Zong and C. T. Che, J. Nat. Prod., 1995, 58, 577.
    [85] 林宏建,利用液相層析/電灑/質譜儀檢測大黃樣品中之主要成分,私立東吳大學化學研究所碩士論文,台北,1998。
    [86] 行政院衛生署中華藥典編修委員會編,中華藥典(第四版),第158頁,台北,1990。
    [87] 行政院衛生署中華藥典編修委員會編,中華藥典(第四版),第163頁,台北,1990。
    [88] 吳權益,大黃葛根黃芩之定量分析研究,第191-200頁,國立台灣師範大學化學研究所碩士論文,台北,2001。
    [89] 高尚德,三黃瀉心湯對交感神經與焦慮之影響,中國醫藥學院中國醫學研究所碩士論文,台中,1985。
    [90] 王林、郭勝典、李迎春、張海,三黃片對胃腸運動、抗炎抑菌的研究,中成藥,1992,14,30。
    [91] 蔡親福、曾子南,黃連解毒湯與三黃瀉心湯對大鼠胃粘膜的保護作用,中成藥,1993,15,47。
    [92] 李裕懷,三黃瀉心湯加味治療上消化道出血50例臨床觀察,新中醫,1995,27,33。
    [93] 劉渡舟,漫談三黃瀉心湯及其臨床應用,中醫雜志,1987,28,19。
    [94] 賴錦益,三黃瀉心湯的藥物動力學及生體可用率之研究,中國醫藥學院中國藥學研究所碩士論文,台中,1997。
    [95] 梁建文,大黃素在兔體內之藥物動態學及在中藥中之定量,中國醫藥學院藥物化學研究所碩士論文,台中,1992。
    [96] K. Seya, N. Ohkohchi, H. Shibuya, M. Satoh, K. Oikawa, T. Fukumori, S. Satomi and S. Motomura, J. Pharm. Biomed. Anal., 2001, 23, 517.
    [97] W. R. Wrightson, S. R. Myers and S. Galandiuk, J. Chromatogr. B, 1998, 706, 359.
    [98] D. O. Rumiantser and T. V. Ivanova, J. Chromatogr. B, 1995, 674, 303.
    [99] I. Ono, K. Matsuda and S. Kanno, J. Chromatogr. B, 1996, 678, 385.
    [100] C. R. Mallet, Analysis of acidic and basic drugs in rat plasma by LC/MS/MS using a novel mixed-mode cation/anion exchange SPE sorbent, Waters Corporation 34 Maple St, Milford, MA, USA, 2000.
    [101] 賴榮祥,大黃的基原植物及其相關生藥製劑之應用,文華國際生藥研究所,台中,1997。
    [102] 許鴻源、許照信,常用漢方方劑圖解,第118頁,新醫藥出版社,臺北,1985。
    [103] 中國藥品生物製品檢定所,中國中藥材真偽鑑別圖鑑(2),第6頁,廣東科技出版社,廣東,1997。
    [104] 蕭培根,中國本草圖錄卷五,第39頁,台灣商務印書館股份有限公司,台北,1989。
    [105] 行政院衛生署中醫藥委員會,認識常用中藥(三),第3-6頁,台彩文化事業股份有限公司,台北,1999。
    [106] 陳榮福、顏焜熒,中藥藥理學,第212-217頁,國立中國醫藥研究所,台北,1991。
    [107] 李樹猷,現代中藥學(上),第252頁,正中書局,台北,1973。
    [108] Y. Kashiwada, G. I. Nonaka and I. Nishioka, Chem. Pharm. Bull., 1989, 37, 999.

    無法下載圖示
    QR CODE