簡易檢索 / 詳目顯示

研究生: 陳怡彣
Chen, Yi-Wen
論文名稱: 建模與擴增實境在高一學生凸透鏡課程的應用以及探究其學習成效之研究
An Investigation of 10th grades’ Modeling Process When Use Modeling-based Instruction with Augmented Reality Technique in Convex Lens Course.
指導教授: 邱美虹
Chiu, Mei-Hung
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2018
畢業學年度: 107
語文別: 中文
論文頁數: 136
中文關鍵詞: 建模教學擴增實境凸透鏡
英文關鍵詞: Modeling, Augmented Reality, Convex Lens
DOI URL: http://doi.org/10.6345/THE.NTNU.GSE.010.2018.F02
論文種類: 學術論文
相關次數: 點閱:191下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的主要探討建模教學輔以擴增實境對於高一學生學習凸透鏡課程之學習成效以及建模歷程,本研究設計以建模歷程作為教學設計之主軸來進行凸透鏡相關知識的教學,並開發一擴增實境教學工具輔助高一學生學習凸透鏡成像概念。針對新北市某市立高中一年級普通班三個班級之學生進行研究,本研究將其隨機分派至實驗組一、實驗組二與一組對照組:實驗組一的學生進行講述式教學輔以實作,共36人;實驗組二的學生進行建模教學輔以擴增實境,共34人;對照組學生採用未結合任何實驗之講述式教學,共35人。
    本研究設計了凸透鏡概念測驗試卷,委請三位專家提出指正,建立專家效度,對學生施以前測後測診斷學生凸透鏡學習概念及建模歷程。在教學過程中,使用課堂學習單,瞭解學生學習過程中之建模情形。此外,發展出一份態度量表分析使用建模教學輔以擴增實境的學生對於使用擴增實境輔助學習的學習態度。最後於課後進行訪談做更進一步深度的質性探討。
    本研究結果顯示:1. 建模教學輔以擴增實境組的後測表現優於講述式教學組以及講述式教學輔以實作組,經ANVOCA分析p值0.04達顯著差異,顯示建模教學輔以擴增實境有助於提升學生學習凸透鏡相關知識之學習成效。2. 建模教學輔以擴增實境組中低成就學生後測表現優於講述式教學組以及講述式教學輔以實作組,經ANVOCA分析p值0.001達顯著差異,顯示有建模教學輔以擴增實境有助於提升中低成就學生之學習表現。3. 建模教學輔以擴增實境組於後測在模型分析步驟以及模型修正步驟答題表現優於講述式教學組以及講述式教學輔以實作組,經ANVOCA分析,p值0.003以及0.008皆達顯著差異,顯示建模教學輔以擴增實境有助學生模型分析以及模型修正表現。4. 學生對於採用建模教學以及使用擴增實境協助學習皆抱持正面態度。

    The purpose of this study is to investigate the effectiveness of model-based teaching with augmented reality apps on students’ learning of the concept of lenses and light in the science of physics including convex. The study was designed as a teaching method with model-based teaching and AR technology in teaching the convex lens image-forming to tenth graders. This thesis introduces model-based teaching in science education and conducts an interactive and integrated image-forming experiment using AR technology to improve teaching.
    The three classes of students were randomly assigned to the experimental group 1 which is using model-based teaching and AR instructional applications, the experimental group 2 which is using traditional tools to conduct convex lens image-forming experiment, and the comparison group which is using conventional instruction.The collected data were analyzed to evaluate any differences in the learning achievements for the three research groups.
    This study show that model-based teaching with augmented reality enviroment would help students to develop a new scientific model about convex lens image-forming. The expirment results indecate the model-based teaching improve the learning performance of underachievement and medium achievement students. In addition, Augmented reality in education stimulates students's learning interests in the content of the course and most students were found to have positive attitudes towards using AR for their learning in physics courses.

    第壹章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與問題 2 第三節 名詞解釋 4 第四節 研究範圍與限制 5 第貳章 文獻探討 6 第一節 學習過程中的建模歷程 6 第二節 學生凸透鏡的迷思概念 11 第三節 擴增實境於教學的應用 13 第參章 研究方法 16 第一節 研究對象 16 第二節 研究設計 17 第三節 教學設計 18 第四節 研究工具 26 第五節 研究實施與步驟 31 第六節 資料分析與處理 33 第肆章 研究結果與討論 35 第一節 學習成效分析 35 第二節 建模歷程分析 46 第三節 建模教學學習觀點分析 87 第四節 擴增實境教學學習觀點分析 90 第伍章 結論與建議 104 第一節 結論 104 第二節 建議 107 參考文獻 109 附錄一 凸透鏡教學教案 115 附錄二 凸透鏡概念測驗試卷 122 附錄三 凸透鏡單元學習單 126 附錄四 態度量表 128 附錄五 訪談問卷 129 附錄六 凸透鏡課程之建模教學投影片 130

    Anastassova, M., & Burkhardt, J.-M. (2009). Automotive technicians' training as a community-of-practice: Implications for the design of an augmented reality teaching aid. Applied ergonomics, 40(4), 713-721.
    Andersson, B., & Kärrqvist, C. (1983). How Swedish pupils, aged 12‐15 years, understand light and its properties. European Journal of Science Education, 5(4), 387-402.
    Asai, K., Kobayashi, H., & Kondo, T. (2005, July). Augmented instructions-a fusion of augmented reality and printed learning materials. In Advanced Learning Technologies, 2005. ICALT 2005. Fifth IEEE International Conference on (pp. 213-215).
    Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators & Virtual Environments, 6(4), 355-385.
    Beaty, W. J. (1994). A Lens Misconception. Retrieved from Science Hobbyists website http://amasci.com/miscon/lens1.html.
    Billinghurst, M., Belcher, D., Gupta, A., & Kiyokawa, K. (2003). Communication behaviors in colocated collaborative AR interfaces. International Journal of Human-Computer Interaction, 16(3), 395-423.
    Blair, G. S., Duran-Limon, H., Coulson, G., Grace, P., Parlavantzas, N., Blair, L., & Moreira, R. (2000). Reflection, Self-Awareness and Self-Healing. Proc. In: ACM.
    Chang, H. P., Chen, J. Y., Guo, C. J., Chen, C. C., Chang, C. Y., Lin, S. H., ... & Chen, C. C. (2007). Investigating primary and secondary students’ learning of physics concepts in Taiwan. International Journal of Science Education, 29(4), 465-482.
    Chang, K. E., Chang, C. T., Hou, H. T., Sung, Y. T., Chao, H. L., & Lee, C. M. (2014). Development and behavioral pattern analysis of a mobile guide system with augmented reality for painting appreciation instruction in an art museum. Computers & Education, 71, 185-197.
    Chang, Y. L., Hou, H. T., Pan, C. Y., Sung, Y. T., & Chang, K. E. (2015). Apply an augmented reality in a mobile guidance to increase sense of place for heritage places. Journal of Educational Technology & Society, 18(2).
    Chiang, T. H. C., Yang, S. J., & Hwang, G. J. (2014). An augmented reality-based mobile learning system to improve students' learning achievements and motivations in natural science inquiry activities. Educational Technology & Society, 17(4), 352-365.
    Coll, R. K., & Lajium, D. (2011). Modeling and the Future of Science Learning. In M. S. Khine & I. M. Saleh (Eds.), Models and Modeling: Cognitive Tools for Scientific Enquiry (pp. 3-21). Dordrecht: Springer Netherlands.
    Di Serio, Á., Ibáñez, M. B., & Kloos, C. D. (2013). Impact of an augmented reality system on students' motivation for a visual art course. Computers & Education, 68, 586-596.
    Gavish, N., Gutiérrez, T., Webel, S., Rodríguez, J., Peveri, M., Bockholt, U., & Tecchia, F. (2015). Evaluating virtual reality and augmented reality training for industrial maintenance and assembly tasks. Interactive Learning Environments, 23(6), 778-798.
    Gilbert, S. W. (1991). Model building and a definition of science. Journal of Research in Science Teaching, 28(1), 73-79.
    Gilbert, J. K., Boulter, C., & Rutherford, M. (1998). Models in explanations, Part 1: Horses for courses?. International Journal of Science Education, 20(1), 83-97.
    Gilbert, J. K., Boulter, C. J., & Elmer, R. (2000). Positioning Models in Science Education and in Design and Technology Education. In J. K. Gilbert & C. J. Boulter (Eds.), Developing Models in Science Education (pp. 3-17). Dordrecht: Springer Netherlands.
    Gilbert, J. K. (2004). Models and modelling: Routes to more authentic science education. International Journal of Science and Mathematics Education, 2(2), 115-130.
    Goldberg, F. M., & McDermott, L. C. (1987). An investigation of student understanding of the real image formed by a converging lens or concave mirror. American journal of physics, 55(2), 108-119.
    Greca, I. M., & Moreira, M. A. (2000). Mental models, conceptual models, and modelling. International journal of science education, 22(1), 1-11.
    Grosslight, L., Unger, C., Jay, E., & Smith, C. L. (1991). Understanding models and their use in science: Conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28(9), 799-822.
    Halloun, I. (1996). Schematic modeling for meaningful learning of physics. Journal of Research in Science Teaching, 33(9), 1019-1041.
    Han, J., Jo, M., Hyun, E., & So, H. J. (2015). Examining young children’s perception toward augmented reality-infused dramatic play. Educational Technology Research and Development, 63(3), 455-474.
    Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22(9), 1011-1026.
    Head, J. (1986). Research into ‘Alternative Frameworks’: promise and problems. Research in Science & Technological Education, 4(2), 203-211.
    Hestenes, D. (1992). Modeling games in theNewtonian world. American Journal of Physics,60, 732-748.
    Hsiao, K. F., Chen, N. S., & Huang, S. Y. (2012). Learning while exercising for science education in augmented reality among adolescents. Interactive Learning Environments, 20(4), 331-349.
    Justi, R., & van Driel, J. (2005). A Case Study of the Development of a Beginning Chemistry Teacher's Knowledge about Models and Modelling. Research in Science Education, 35(2), 197-219. doi:10.1007/s11165-004-7583-z
    Kamarainen, A. M., Metcalf, S., Grotzer, T., Browne, A., Mazzuca, D., Tutwiler, M. S., & Dede, C. (2013). EcoMOBILE: Integrating augmented reality and probeware with environmental education field trips. Computers & Education, 68, 545-556.
    Lu, S. J., & Liu, Y. C. (2015). Integrating augmented reality technology to enhance children’s learning in marine education. Environmental Education Research, 21(4), 525-541.
    Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1995). Augmented reality: A class of displays on the reality-virtuality continuum. Paper presented at the Telemanipulator and telepresence technologies.
    Mintzes, J. J., Wandersee, J. H., & Novak, J. D. (2005). Teaching science for understanding: A human constructivist view: Academic Press.
    Muñoz-Cristóbal, J. A., Jorrín-Abellán, I. M., Asensio-Pérez, J. I., Martinez-Mones, A., Prieto, L. P., & Dimitriadis, Y. (2015). Supporting teacher orchestration in ubiquitous learning environments: a study in primary education. IEEE Transactions on Learning Technologies, 8(1), 83-97.
    Ramadas, J. (2009). Visual and spatial modes in science learning. International Journal of Science Education, 31(3), 301-318.
    Schwarz, C. V., & Gwekwerere, Y. N. (2007). Using a guided inquiry and modeling instructional framework (EIMA) to support preservice K‐8 science teaching. Science education, 91(1), 158-186.
    Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Achér, A., Fortus, D., ... & Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of research in science teaching, 46(6), 632-654.
    Shepardson, D. P., & Moje, E. B. (1994). The nature of fourth graders' understandings of electric circuits. Science Education, 78(5), 489-514.
    Vosniadou, S., & Brewer, W. F. (1987). Theories of knowledge restructuring in development. Review of educational research, 57(1), 51-67.
    Wojciechowski, R., & Cellary, W. (2013). Evaluation of learners’ attitude toward learning in ARIES augmented reality environments. Computers & Education, 68, 570-585.
    邱美虹. (2008). 模型與建模能力之理論架構. 科學教育月刊.
    邱美虹, & 劉俊庚. (2008). 從科學學習的觀點探討模型與建模能力. 科學教育月刊(314), 2-20.
    張志康, & 邱美虹. (2009). 建模能力分析指標的發展與應用-以電化學為例. 科學教育學刊, 17(4), 319-342.
    黃郁芳, & 施能木. (2011). 擴增實境技術應用於凸版版畫教學之設計研究. 第十屆離島資訊技術與應用研討會發表之論文, 國立臺東大學.
    洪振方, 莊敏雄, & 宋國城. (2011). 建模教學對國小學童的模型認知及地質概念理解之影響. 科學教育學刊, 19(4), 309-333.
    羅之伶, (2010). 擴增實境應用於產品造形設計教學之研究. 國立臺北教育大學藝術與造型設計學系學位論文, 1-98.
    邱美虹, & 唐尉天. (2014). 行動科技, 擴增實境與 3D 實驗影片教學: 行動科技
    與擴增實境在科學教育上的應用. 臺灣化學教育.
    邱美虹, (2016). 科學模型、科學建模與建模能力. 臺灣化學教育,第十一期.

    下載圖示
    QR CODE